Impairment of Phosphatidylinositol Metabolism in a Patient with a Bleeding Disorder Associated with Defects of Initial Platelet Responses

1988 ◽  
Vol 59 (02) ◽  
pp. 175-179 ◽  
Author(s):  
Bruce Lages ◽  
Harvey J Weiss

SummaryPhosphoinositide/polyphosphoinositide (PI/PPI) metabolism, measured by the increase of 3H-phosphatidic acid (PA) and the decrease of 3H-phosphatidylinositol (PI) in 3H-arachidonate- labeled platelet suspensions, was assessed in five patients whose platelet functional defects included impaired initial rates of ADP, epinephrine and U44069 aggregation in platelet-rich plasma (PRP). In one patient, 3H-PA formation induced by collagen and thrombin was reduced or absent on two of three occasions, and the decrease in 3H-PI was reduced on one of these two occasions in response to collagen and A23187, and on all 3 occasions in response to thrombin. The variations in the formation of 3H-PA in this patient on different occasions broadly paralleled the variations in the initial rates of ADP and U44069 aggregation and in epinephrine aggregation seen in PRP. No such abnormalities of PI metabolism were found in four other patients with similar, but not identical, functional defects. These results suggest an impairment affecting metabolism of PI/PPI via the PI/PPI cycle in this patient's platelets. The association of abnormalities of PI metabolism with defects of initial platelet responses provides further support for a physiological role of phosphoinositide metabolism in the early activation mechanisms of platelets.

Open Medicine ◽  
2016 ◽  
Vol 11 (1) ◽  
pp. 242-247 ◽  
Author(s):  
Voja Pavlovic ◽  
Milan Ciric ◽  
Vladimir Jovanovic ◽  
Predrag Stojanovic

AbstractPlatelet rich plasma (PRP) represents a relatively new approach in regenerative medicine. It is obtained from patient’s own blood and contains different growth factors and other biomolecules necessary for wound healing. Since there are various protocols for PRP preparing, it usually results with PRP generation with different amounts of bioactive substances, which finally may modulate the intensity of wound healing. The reference data about potential effect of some PRP compounds on wound healing, in different tissues, are still controversial. This review summarizes recently known facts about physiological role of certain PRP components and guidance for further research. Also, this review discusses different procedure for PRP generation and potential effect of leukocytes on wound healing.


2012 ◽  
Vol 32 (01) ◽  
pp. 51-55 ◽  
Author(s):  
F. Stephan ◽  
L. A. Aarden ◽  
S. Zeerleder

SummaryFactor VII-activating protease (FSAP) is a serine protease in plasma that has a role in coagulation and fibrinolysis. FVII could be activated by purified FSAP in a tissue factor independent manner and pro-urokinase has been demonstrated to be a substrate for purified FSAP in-vitro. However, the physiological role of FSAP in haemostasis remains unclear. More recently FSAP is suggested to be involved in inflammation. It modulates vascular permeability directly and indirectly by the generation of bradykinin. Furthermore, FSAP is activated by dead cells induced by the inflammatory response and subsequently removes nucleosomes from apoptotic cells. FSAP activation can be detected in sepsis patients as well. However, whether FSAP activation upon inflammation is beneficial or detrimental remains an open question.In this review the structure, activation mechanisms and the possible role of FSAP in inflammation are discussed.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3849-3849
Author(s):  
Lawrence L Horstman ◽  
Jacob Esquenazi ◽  
Wenche Jy ◽  
Yeon-Soong Ahn

Abstract INTRODUCTION. Cell-derived microparticles (MP) such as from platelets (PMP), endothelia (EMP) and leukocytes (LMP) are increasingly recognized as useful biomarker and important mediators of thrombosis and inflammation. However, little attention has been paid to the possible role of MP from RBC (RMP) in vascular disorders. RMP were identified by glycophorin (GPH) in flow cytometry in most studies. We reported heterogeneity of RMP in size and phenotypes and that GPH is expressed predominately in larger RMP, not in smaller RMP and that GPH+ RMP are more active than GPH- RMP in thrombin generation. Since acetylcholinesterase (AChE) activity has been measured on RMP, and was recently proposed as a marker of some inflammatory states, we investigated AChE activity of RMP compared to platelet-derived MP (PMP). AChE of PMP has not previously been reported. METHODS. RMP were prepared from intact washed RBC at 18% Ht exposed to calcium ionophore (4uM) in presence of calcium (2mM) for 30 min. PMP were prepared from 20 mL citrated blood, and exposing the platelet-rich plasma to 1 uM calcium ionophore (without added Ca2+) and collagen, 4ug/mL, for 20 min. AChE assay was based on Ellman’s method and reagent (DTNB), run in 96-well plates, 300uL. Substrate was acetylthiocholine iodide (1 mM f.c.). DTNB was used at 0.67 mM f.c. Tests were run +/− quinidine (Q) (1.2 uM) and some tests were in presence of saponin 0.01%. Q is known to inhibit AChE of plasma but RBC activity is insensitive. Activity is expressed in umols substrate cleaved /min per 108 MP, with provisos below. Flow cytometry using FITC labeled lectin, Ulex europaeus (Ulex) was used to quantitate RMP and PMP. RESULTS. As expected, Q inhibited AChE in plasma by >90% but not AChE of RMP. On contrary, RMP were consistently stimulated by Q, up to 150% activity +Q; some preparations of PMP were also stimulated. Saponin, which has been used in assay of RBC AChE, had little effect on PMP or RMP activity. In 12 experiments, AChE of PMP exhibited marked concentration-dependence. The apparent activity per mL of suspension was greater with lesser volumes, by as much as 3-fold between 2.5uL and 20uL added. This could not be explained by substrate inhibition since the effect varied in different preparations, was absent in particle-free plasma, and did not diminish in low substrate. This suggests the presence of a natural inhibitor. Calculation of specific activity of the MP was complicated by the dependence of apparent activity on volume assayed. However, when equal dilutions were compared, a representative experiment showed RMP had about 6-fold greater activity than PMP per 108 MP: 36.0 vs. 5.88 for 2.5uL suspension; and 29.0 vs. 3.9 for 20 uL assayed, in units above. CONCLUSIONS / DISCUSSION. The AChE activity of RMP is about 6-fold greater than PMP. Weaker activity on PMP is possibly attributed to a previously unreported natural inhibitor. Blood AChE activity has been shown to reflect inflammatory states. Since AChE is a GPI-anchored protein, it is preferentially depleted from cells on the MP shed off. Assay of this activity in patient cell-free plasma, +/− Q, may be a useful biomarker. It is well known that hemolytic anemia, where RMP are elevated, is often associated with thrombotic complications, whereas ITP, where PMP are frequently elevated, rarely is. Further study to characterize AChE in RMP and other MP, and to clarify the physiological role of MP- and cell-associated AChE in thrombosis, inflammation, and cardiovascular disease is in progress.


1996 ◽  
Vol 271 (2) ◽  
pp. C435-C454 ◽  
Author(s):  
W. A. Large ◽  
Q. Wang

In this review we discuss the properties of the Ca(2+)-activated Cl- current [ICl(Ca)] recorded in isolated smooth muscle cells with electrophysiological techniques and speculate on the possible physiological role(s) of ICl(Ca) in smooth muscle function. In particular, we concentrate on 1) the Ca2+ dependence of ICl(Ca), 2) the mechanisms that link pharmacological receptor stimulation on the cell surface membrane to activation of ICl(Ca), 3) the biophysical properties of ICl(Ca), and 4) the pharmacology of ICl(Ca). It is evident that a diverse array of pharmacological agonists can evoke ICl(Ca) in many types of smooth muscle, and it seems that the well-established G protein-phosphoinositide metabolism (inositol 1,4,5-trisphosphate)-intracellular Ca2+ store pathway couples the receptor to the membrane channels. Also, the results indicate that the biophysical and pharmacological properties of ICl(Ca) are not only similar in the various smooth muscle types studied so far but, possibly, are also similar to ICl(Ca) in non-smooth muscle tissue. Evidence is presented that the Ca(2+)-activated Cl- channel exists in two states, open and closed, with a relatively long mean open time and that some of the agents that inhibit ICl(Ca) interact directly with the open channel. It is suggested that the most likely role of ICl(Ca) in smooth muscle is to produce membrane depolarization and contraction to neurotransmitters and local mediators.


1980 ◽  
Vol 44 (01) ◽  
pp. 006-008 ◽  
Author(s):  
D Bergqvist ◽  
K-E Arfors

SummaryIn a model using an isolated rabbit mesenteric preparation microvessels were transected and the time until haemostatic plugs formed was registered. Perfusion of platelet rich plasma gave no haemostasis whereas whole blood did. Addition of chlorpromazine or adenosine to the whole blood significantly prolonged the time for haemostasis, and addition of ADP to the platelet rich plasma significantly shortened it. It is concluded that red cells are necessary for a normal haemostasis in this model, probably by a combination of a haemodynamic and ADP releasing effect.The fundamental role of platelets in haemostatic plug formation is unquestionable but there are still problems concerning the stimulus for this process to start. Three platelet aggregating substances have been discussed – thrombin, adenosine diphosphate (ADP) and collagen. Evidence speaking in favour of thrombin is, however, very minimal, and the discussion has to be focused on collagen and ADP. In an in vitro system using polyethylene tubings we have shown that "haemostasis" can be obtained without the presence of collagen but against these results can be argued that it is only another in vitro test for platelet aggregation (1).To be able to induce haemostasis in this model, however, the presence of red blood cells is necessary. To further study this problem we have developed a model where haemostatic plug formation can be studied in the isolated rabbit mesentery and we have briefly reported on this (2).Thus, it is possible to perfuse the vessels with whole blood as well as with platelet rich plasma (PRP) and different pharmacological agents of importance.


1981 ◽  
Vol 46 (02) ◽  
pp. 538-542 ◽  
Author(s):  
R Pilo ◽  
D Aharony ◽  
A Raz

SummaryThe role of arachidonic acid oxygenated products in human platelet aggregation induced by the ionophore A23187 was investigated. The ionophore produced an increased release of both saturated and unsaturated fatty acids and a concomitant increased formation of TxA2 and other arachidonate products. TxA2 (and possibly other cyclo oxygenase products) appears to have a significant role in ionophore-induced aggregation only when low concentrations (<1 μM) of the ionophore are employed.Testosterone added to rat or human platelet-rich plasma (PRP) was shown previously to potentiate platelet aggregation induced by ADP, adrenaline, collagen and arachidonic acid (1, 2). We show that testosterone also potentiates ionophore induced aggregation in washed platelets and in PRP. This potentiation was dose and time dependent and resulted from increased lipolysis and concomitant generation of TxA2 and other prostaglandin products. The testosterone potentiating effect was abolished by preincubation of the platelets with indomethacin.


1997 ◽  
Vol 77 (05) ◽  
pp. 0959-0963 ◽  
Author(s):  
Lisa Seale ◽  
Sarah Finney ◽  
Roy T Sawyer ◽  
Robert B Wallis

SummaryTridegin is a potent inhibitor of factor Xllla from the leech, Haementeria ghilianii, which inhibits protein cross-linking. It modifies plasmin-mediated fibrin degradation as shown by the absence of D-dimer and approximately halves the time for fibrinolysis. Plasma clots formed in the presence of Tridegin lyse more rapidly when either streptokinase, tissue plasminogen activator or hementin is added 2 h after clot formation. The effect of Tridegin is markedly increased if clots are formed from platelet-rich plasma. Platelet-rich plasma clots are lysed much more slowly by the fibrinolytic enzymes used and if Tridegin is present, the rate of lysis returns almost to that of platelet- free clots. These studies indicate the important role of platelets in conferring resistance to commonly used fibrinolytic enzymes and suggest that protein cross-linking is an important step in this effect. Moreover they indicate that Tridegin, a small polypeptide, may have potential as an adjunct to thrombolytic therapy.


2012 ◽  
Vol 30 (1) ◽  
pp. 100
Author(s):  
Wei HUANG ◽  
Shi-Bao ZHANG ◽  
Kun-Fang CAO

Sign in / Sign up

Export Citation Format

Share Document