Comparative Hemorheological and Biochemical Studies of a Bovine Fibrinogen

1975 ◽  
Author(s):  
A. L. Copley ◽  
R. G. King ◽  
B. Blombäck

Among numerous fibrinogen (Fg) preparations of different mammalian origins (human, bovine, sheep, rabbit, cat) in measurements of viscous resistance -VR- (torque values, τ, dyne, cm) of surface layers (SLs), we found as an exception a bovine Fg, FgSM (Schwarz-Mann, Orangeburg, N.Y. Lot # Y1013), which did not show measurable VR at shear rates (SRs) from 10-3 to 10-1 sec-1 without prior application of high shearing forces (hSF). This led to biochemical characterization, in which FgSM did not exhibit any significant difference in chain structure, as compared with highly purified Fg showing high τ, indicating that a dialysable component in the FgSM was responsible for the inhibition of VR. Our biochemical studies could not detect significant differences between the FgSM and Fg from other sources. A hSF at 1000 sec-1 for 3 min was then applied prior to the rheological tests at low SF from 10-3 to 10-1 sec-1. This procedure always resulted in significant increases in VR of SLs of all Fg preparations, including the FgSM. High shear, which exists at the vessel wall in vivo, is particularly high in the microcirculation and is also augmented in vortex and disturbed flow at sites of branchings, bends and bifurcations in the vascular system. The hSF may contribute to the initiation of thrombus formation due to the proposed progressive adsorption of Fg, layer upon layer, at these sites (Copley, Biorheol. 8, 79, 1971; Microvasc. Res. 8, 192, 1974). A further hypothesis is introduced in which the polymerization sites of the Fg molecule are unfolded by the hSF at the vessel wall, resulting in intravascular polymerization of Fg(Aided in part by Office of Naval Research Contract # N00014-75-C-0222 )

1967 ◽  
Vol 18 (03/04) ◽  
pp. 592-604 ◽  
Author(s):  
H. R Baumgartner ◽  
J. P Tranzer ◽  
A Studer

SummaryElectron microscopic and histologic examination of rabbit ear vein segments 4 and 30 min after slight endothelial damage have yielded the following findings :1. Platelets do not adhere to damaged endothelial cells.2. If the vessel wall is denuded of the whole endothelial cell, platelets adhere to the intimai basement lamina as do endothelial cells.3. The distance between adherent platelets as well as endothelial cells and intimai basement lamina measures 10 to 20 mµ, whereas the distance between aggregated platelets is 30 to 60 mµ.4. 5-hydroxytryptamine (5-HT) is released from platelets during viscous metamorphosis at least in part as 5-HT organelles.It should be noted that the presence of collagen fibers is not necessary for platelet thrombus formation in vivo.


2008 ◽  
Vol 86 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Zachery R. Belak ◽  
Andrew Ficzycz ◽  
Nick Ovsenek

YY1 (Yin Yang 1) is present in the Xenopus oocyte cytoplasm as a constituent of messenger ribonucleoprotein complexes (mRNPs). Association of YY1 with mRNPs requires direct RNA-binding activity. Previously, we have shown YY1 has a high affinity for U-rich RNA; however, potential interactions with plausible in vivo targets have not been investigated. Here we report a biochemical characterization of the YY1–RNA interaction including an investigation of the stability, potential 5′-methylguanosine affinity, and specificity for target RNAs. The formation of YY1–RNA complexes in vitro was highly resistant to thermal, ionic, and detergent disruption. The endogenous oocyte YY1–mRNA interactions were also found to be highly stable. Specific YY1–RNA interactions were observed with selected mRNA and 5S RNA probes. The affinity of YY1 for these substrates was within an order of magnitude of that for its cognate DNA element. Experiments aimed at determining the potential role of the 7-methylguanosine cap on RNA-binding reveal no significant difference in the affinity of YY1 for capped or uncapped mRNA. Taken together, the results show that the YY1–RNA interaction is highly stable, and that YY1 possesses the ability to interact with structurally divergent RNA substrates. These data are the first to specifically document the interaction between YY1 and potential in vivo targets.


1981 ◽  
Author(s):  
Y C Chen ◽  
K K Wu ◽  
E R Hall ◽  
D L Venton ◽  
G C Le Breton

It is well recognized that thromboxane A2(TXA2) plays an important role in platelet reactivity. To determine the role of TXA2 in platelet-vessel wall (P-V) interaction, the effect of 1-benzylimidazole (1-BI), a specific inhibitor of thromboxane synthetase, and 13-azaprostanoic acid (APA), a TXA2 antagonist, on platelet thrombus formation was evaluated in vivo in NZW male rabbits using the autologous indium-111 (111In) labeled platelet technique. Rabbits were treated with intravenous 1-BI or APA or vehicles. After injection of autologous 111In-platelets, de-endothelialization of the abdominal aorta was created by a balloon catheter technique. At 3 hrs, blood samples were obtained and the animals were sacrificed. The aortae were removed and the injured and uninjured segments were dissected. Radioactivity counts and dry weight of the tissues and blood were determined. The vascular radioactivity counts were converted to platelet numbers by using a standard linear calibration curve. As small numbers of platelets adhered to normal vessel wall nonspecifically, this number was subtracted to obtain specific platelet accumulation at the injured sites. 1-BI at 10mg/kg reduced the specific platelet accumulation significantly (n=5, 12.3±S.D.I.5×106 pl/gm tissue; p<0.01) when compared with the controls (n=10, 33.0±5.1×106 pl/gm tissue). Platelet accumulation was further reduced by increasing the dosage to 30mg/kg. By contrast, APA injection (10mg/kg) had no significant effect. However, when APA was given by constant infusion at 250μg/kg/min 1 hr prior to injury, the APA-treated animals had an 80% reduction of platelet accumulation relative to controls. These findings indicate that TXA2 plays an important role in P-V interaction and specific inhibition of TXA2 appears to be efficacious in eliminating platelet thrombus formation.


Blood ◽  
2005 ◽  
Vol 105 (1) ◽  
pp. 192-198 ◽  
Author(s):  
Sharlene M. Day ◽  
Jennifer L. Reeve ◽  
Brian Pedersen ◽  
Diana M Farris ◽  
Daniel D. Myers ◽  
...  

Abstract Leukocytes and leukocyte-derived microparticles contain low levels of tissue factor (TF) and incorporate into forming thrombi. Although this circulating pool of TF has been proposed to play a key role in thrombosis, its functional significance relative to that of vascular wall TF is poorly defined. We tested the hypothesis that leukocyte-derived TF contributes to thrombus formation in vivo. Compared to wild-type mice, mice with severe TF deficiency (ie, TF–/–, hTF-Tg+, or “low-TF”) demonstrated markedly impaired thrombus formation after carotid artery injury or inferior vena cava ligation. A bone marrow transplantation strategy was used to modulate levels of leukocyte-derived TF. Transplantation of low-TF marrow into wild-type mice did not suppress arterial or venous thrombus formation. Similarly, transplantation of wild-type marrow into low-TF mice did not accelerate thrombosis. In vitro analyses revealed that TF activity in the blood was very low and was markedly exceeded by that present in the vessel wall. Therefore, our results suggest that thrombus formation in the arterial and venous macrovasculature is driven primarily by TF derived from the blood vessel wall as opposed to leukocytes.


Blood ◽  
2003 ◽  
Vol 102 (10) ◽  
pp. 3652-3657 ◽  
Author(s):  
Li He ◽  
Loretta K. Pappan ◽  
David G. Grenache ◽  
Zhengzhi Li ◽  
Douglas M. Tollefsen ◽  
...  

AbstractThe α2β1 integrin serves as a receptor for collagens, laminin, and several other nonmatrix ligands. Many studies have suggested that the α2β1 integrin is a critical mediator of platelet adhesion to collagen within the vessel wall after vascular injury and that the interactions of the platelet α2β1 integrin with subendothelial collagen after vascular injury are required for proper hemostasis. We have used the α2β1 integrin-deficient mouse to evaluate the contributions of the α2β1 integrin in 2 in vivo models of thrombosis. Studies using a model of endothelial injury to the carotid artery reveal that the α2β1 integrin plays a critical role in vascular thrombosis at the blood-vessel wall interface under flow conditions. In contrast, the α2β1 integrin is not required for the formation of thrombi and pulmonary emboli following intravascular injection of collagen. Our results are the first to document a critical in vivo role for the α2β1 integrin in thrombus formation at the vessel wall under conditions of shear following vascular injury. (Blood. 2003;102:3652-3657)


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3926-3926 ◽  
Author(s):  
Subia Tasneem ◽  
Adili Reheman ◽  
Heyu Ni ◽  
Catherine P.M. Hayward

Abstract Studies of mice with genetic deficiencies have provided important insights on the functions of many proteins in thrombosis and hemostasis. Recently, a strain of mice (C57BL/6JOlaHsd, an inbred strain of C57BL/6J) has been identified to have a spontaneous, tandem deletion of the multimerin 1 and α-synuclein genes, which are also adjacent genes on human chromosome 4q22. Multimerin 1 is an adhesive protein found in platelets and endothelial cells while α-synuclein is a protein found in the brain and in blood that is implicated in neurodegenerative diseases and exocytosis. In vitro, multimerin 1 supports platelet adhesion while α-synuclein inhibits α-granule release. We postulated that the loss of multimerin 1 and α-synuclein would alter platelet function and that recombinant human multimerin 1 might correct some of these abnormalities. We compared platelet adhesion, aggregation and thrombus formation in vitro and in vivo in C57BL/6JOlaHsd and C57BL/6 mice. Thrombus formation was studied by using the ferric-chloride injured mesenteric arteriole thrombosis model under intravital microscopy. We found that platelet adhesion, aggregation and thrombus formation in C57BL/6JOlaHsd were significantly impaired in comparison to control, C57BL/6 mice. The number of single platelets, deposited 3–5 minutes after injury, was significantly decreased in C57BL/6JOlaHsd mice (P <0.05, platelets/min: C57BL/6 = 157 ± 15, n=16; C57BL/6JOlaHsd = 77 ± 13, n=17). Moreover, thrombus formation in these mice was significantly delayed. Thrombi in C57BL/6JOlaHsd were unstable and easily dissolved, which resulted in significant delays (P<0.001) in vessel occlusion (mean occlusion times: C57BL/6 = 15.6 ± 1.2 min, n=16; C57BL/6JOlaHsd = 31.9 ± 2.1 min, n=17). We further tested platelet function in these mice by ADP and thrombin induced platelet aggregation using platelet rich plasma and gel-filtered platelets, respectively. Although no significant differences were seen with ADP aggregation, thrombin-induced platelet aggregation was significantly impaired in C57BL/6JOlaHsd mice. Platelet adhesion to type I collagen (evaluated using microcapillary chambers, perfused at 1500 s−1 with whole blood) was also impaired in C57BL/6JOlaHsd mice. However, platelets from C57BL/6JOlaHsd mice showed a normal pattern of agonist-induced release of α-granule P-selectin. Multimerin 1 corrected the in vitro aggregation and adhesion defects of C57BL/6JOlaHsd platelets. Furthermore, the transfusion of multimerin 1 into C57BL/6JOlaHsd mice corrected the impaired platelet deposition and thrombus formation in vivo. No significant difference was found in tail bleeding time between the two groups of mice. As α-synuclein knockout mice have a shortened time to thrombus formation (Circulation2007;116:II_76), the effects of multimerin 1 on impaired platelet function in C57BL/6JOlaHsd mice provide supportive evidence that multimerin 1 contributes to platelet adhesion and thrombus formation at the site of vessel injury. The findings suggest multimerin 1 knockout mice will be useful to explore platelet function. The first two authors and participating laboratories contributed equally to this study.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1060-1060
Author(s):  
Soochong Kim ◽  
Carol Dangelmaier ◽  
Dheeraj Bhavanasi ◽  
Shu Meng ◽  
Hong Wang ◽  
...  

Abstract We investigated the mechanism of activation and functional role of a hitherto uncharacterized signaling molecule, RhoG, in platelets. RhoG is a ubiquitously expressed member of the Rho Family of GTPases. We demonstrated for the first time the expression [Fig 1A] and activation of RhoG [Fig 1B] in platelets. Platelet aggregation and dense-granule secretion in response to glycoprotein VI (GPVI) agonists, collagen-related peptide (CRP) and convulxin were significantly inhibited in RhoG-deficient platelets compared to wild type murine platelets [Fig 1C]. Integrin αIIbβ3 activation and α-granule secretion as measured by flow cytometry were also significantly inhibited in RhoG-deficient murine platelets downstream of GPVI agonists. In contrast, 2-MeSADP- and AYPGKF-induced platelet aggregation and secretion [Fig 1D] were minimally affected in RhoG deficient platelets, indicating that the function of RhoG in platelets is GPVI-specific.Figure 1(A): Increasing amounts of human platelet lysate (in μg) were separated by SDS-PAGE, Western blotted, and probed with anti-RhoG antibody. (B) RhoG activation was measured upon stimulation of washed human platelets with 5μg/ml CRP for various times. Washed platelets were lysed and active GTP-bound RhoG was determined by pull-down analysis using bacterially expressed GST-ELMO. (C) Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with GPVI agonists, 2.5 μg/ml CRP and 100 ng/ml convulxin and (D) G protein coupled receptor agonists, 30 nM 2MeSADP and 100 μM AYPGKF for 3.5 min under stirring conditions. Platelet aggregation and ATP secretion were measured by aggregometry.Figure 1. (A): Increasing amounts of human platelet lysate (in μg) were separated by SDS-PAGE, Western blotted, and probed with anti-RhoG antibody. (B) RhoG activation was measured upon stimulation of washed human platelets with 5μg/ml CRP for various times. Washed platelets were lysed and active GTP-bound RhoG was determined by pull-down analysis using bacterially expressed GST-ELMO. (C) Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with GPVI agonists, 2.5 μg/ml CRP and 100 ng/ml convulxin and (D) G protein coupled receptor agonists, 30 nM 2MeSADP and 100 μM AYPGKF for 3.5 min under stirring conditions. Platelet aggregation and ATP secretion were measured by aggregometry. CRP-induced phosphorylations of Syk, Akt and ERK, but not Src family kinases (SFKs), were significantly reduced in RhoG-deficient platelets compared to those of wild type [Fig 2A]. Consistently, CRP-induced RhoG activation was abolished by pan-SFK inhibitor but not by Syk or PI 3-kinase inhibitors [Fig 2B]. Interestingly, unlike CRP, platelet aggregation and Syk phosphorylation induced by fucoidan, a CLEC-2 agonist, were unaffected in RhoG deficient platelets [Fig 2C].Figure 2(A): Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with 2.5 μg/ml CRP and at 37 °C for 2 min and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Src (Tyr416), anti-phospho-Akt (Ser473), anti-phospho-ERK, or anti-β-actin (lane loading control) antibodies by western blotting. (B): RhoG activation induced by 5μg/ml CRP for 60 sec was evaluated in the presence and absence of 10 μM PP2, 2 μM OXSI-2, or 100nM wortmannin. (C): Wild type and RhoG-deficient platelets were stimulated with 100 μg/ml fucoidan and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Akt (Ser473), or anti-β-actin (lane loading control) antibodies by western blotting.Figure 2. (A): Washed platelets from RhoG -/- mice and RhoG +/+ littermates were stimulated with 2.5 μg/ml CRP and at 37 °C for 2 min and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Src (Tyr416), anti-phospho-Akt (Ser473), anti-phospho-ERK, or anti-β-actin (lane loading control) antibodies by western blotting. (B): RhoG activation induced by 5μg/ml CRP for 60 sec was evaluated in the presence and absence of 10 μM PP2, 2 μM OXSI-2, or 100nM wortmannin. (C): Wild type and RhoG-deficient platelets were stimulated with 100 μg/ml fucoidan and probed with anti-phospho-Syk (Tyr525/526), anti-phospho-Akt (Ser473), or anti-β-actin (lane loading control) antibodies by western blotting. Finally, RhoG -/- mice had a significant delay in time to thrombotic occlusion in cremaster arterioles compared to wild type littermates [Fig 3A and 3B], indicating the important in vivo functional role of RhoG in platelets.Figure 3(A): Time required for occlusion of cremaster arterioles in RhoG +/+ and RhoG -/- mice was measured using microvascular thrombosis model with light/dye-induced injury. 5 mice of each genotype were used, and statistical analysis revealed a significant difference between the 2 genotypes of mice (*, P < .01). (B) Representative images of cremaster arterioles were taken from RhoG +/+ and RhoG -/- mice 30 min after the injury. As seen with the outline (arrows) of the thrombus formed, thrombus formation was inhibited in RhoG -/- mice.Figure 3. (A): Time required for occlusion of cremaster arterioles in RhoG +/+ and RhoG -/- mice was measured using microvascular thrombosis model with light/dye-induced injury. 5 mice of each genotype were used, and statistical analysis revealed a significant difference between the 2 genotypes of mice (*, P < .01). (B) Representative images of cremaster arterioles were taken from RhoG +/+ and RhoG -/- mice 30 min after the injury. As seen with the outline (arrows) of the thrombus formed, thrombus formation was inhibited in RhoG -/- mice. In conclusion, we show for the first time that RhoG is expressed and activated in platelets, plays an important role in GPVI/FcRγ-mediated platelet activation and is critical for thrombus formation in vivo. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 33 (1) ◽  
pp. 32-38
Author(s):  
Kuizhong Wang ◽  
Peng Jin ◽  
Peigang Lu ◽  
Qiang Liu ◽  
Bo Li ◽  
...  

Background Flow diverters (FDs) with flared ends (FEs) or straight ends (SEs) are used either alone or when overlapped to treat complex intracranial aneurysms. We evaluated filament inadequate wall apposition (IWA) of the FEs and SEs of FDs in vivo. Methods A total of 24 FDs with FEs and SEs were placed in an overlapping manner in the abdominal aortae of six rabbits (two sets per rabbit). Digital subtraction angiography was performed immediately after stent insertion and three months later. The anatomical and histopathological aortic features at FEs and SEs were evaluated. Results Angiography revealed no significant difference in terms of changes in arterial diameter between the FE and SE groups ( p = 0.877). Gross anatomical evaluation revealed IWA of the different ends of FDs but no thrombi or bleeding, showing that the metallic filaments were not in touch with the vessel wall and nor had they penetrated the vessel wall. The filaments’ IWA rates of FEs and SEs were 8.33% and 8.85%, respectively. The IWA rate at overlapping ends was lower than that at non-overlapping ends. The maximum neo-intimal thickness at FEs was greater than that at SEs (149.4 ± 48.9 and 98.6 ± 26.6 µm, respectively; p < 0.001). Conclusions Both the FEs and SEs of FDs can exhibit IMA. IWA events are reduced at the overlapped regions. On pathological evaluation, FEs increased neo-intimal thicknesses more than SEs did, but hyperplasia was minimal on angiography.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Jamie M Wright ◽  
Jiyuan Chen ◽  
Dianna M Milewicz

Moyamoya Disease is two to four times more common in females than males. The underlying mechanisms behind this are currently unknown. Missense mutations in Acta2 predispose affected individuals to a variety of vascular diseases, including Moyamoya-like cerebrovascular disease. In this study we examined vessel wall thickness on H&E stained brain sections from WT and Acta2-/- male and female mice at 12 weeks of age (n=3 per a group). We found that female Acta2-/- mice had significantly greater percent vessel wall thickness compared to male Acta2-/- mice across all vessel sizes. There was not a significant difference between male and female vessel wall thickness in the wild-type groups. These findings in Acta2-/- mice suggest important sex-dependent differences in the function of α-smooth muscle actin (SMA) in the cerebrovascular system, and likely the vascular system as a whole. This has important implications for the design of studies examining the role of SMA in cerebrovascular disease and the investigation of novel therapies. Figure. Percent wall thickness (%TH) by sex. Two-tailed two-sample t-Test assuming unequal variances: * = p<0.05, ** = p<0.005, *** = p<0.0005 and # = one-tailed t-test significant but not two-tailed. SL=short vessel diameter.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4665-4674 ◽  
Author(s):  
Reema Jasuja ◽  
Bruce Furie ◽  
Barbara C. Furie

Protein disulfide isomerase (PDI) catalyzes the oxidation reduction and isomerization of disulfide bonds. We have previously identified an important role for extracellular PDI during thrombus formation in vivo. Here, we show that endothelial cells are a critical cellular source of secreted PDI, important for fibrin generation and platelet accumulation in vivo. Functional PDI is rapidly secreted from human umbilical vein endothelial cells in culture upon activation with thrombin or after laser-induced stimulation. PDI is localized in different cellular compartments in activated and quiescent endothelial cells, and is redistributed to the plasma membrane after cell activation. In vivo studies using intravital microscopy show that PDI appears rapidly after laser-induced vessel wall injury, before the appearance of the platelet thrombus. If platelet thrombus formation is inhibited by the infusion of eptifibatide into the circulation, PDI is detected after vessel wall injury, and fibrin deposition is normal. Treatment of mice with a function blocking anti-PDI antibody completely inhibits fibrin generation in eptifibatide-treated mice. These results indicate that, although both platelets and endothelial cells secrete PDI after laser-induced injury, PDI from endothelial cells is required for fibrin generation in vivo.


Sign in / Sign up

Export Citation Format

Share Document