Off-Pump Tricuspid Annuloplasty through a Direct Transatrial Approach: Early Results

2019 ◽  
Vol 68 (06) ◽  
pp. 503-506
Author(s):  
Martin Andreas ◽  
Paul Werner ◽  
Guenther Laufer ◽  
Jude Sauer

AbstractSevere tricuspid regurgitation constitutes a growing disease burden. Conventional surgery for tricuspid valve disease has an increased risk while several interventional procedures are currently under clinical investigation, yet do not offer comprehensive solutions. We investigated a novel surgical approach for off-pump beating-heart tricuspid annuloplasty in circulating blood through a single port in the right atrium. Early feasibility results in preclinical porcine in vivo studies encourage further development of this approach, combining the proven concept of surgical annuloplasty with the benefits of minimally invasive off-pump procedures in a hybrid setting.

2020 ◽  
Vol 10 ◽  
Author(s):  
Divya Thakur ◽  
Gurpreet Kaur ◽  
Sheetu Wadhwa ◽  
Ashana Puri

Background: Metronidazole (MTZ) is an anti-oxidant and anti-inflammatory agent with beneficial therapeutic properties. The hydrophilic nature of molecule limits its penetration across the skin. Existing commercial formulations have limitations of inadequate drug concentration present at target site, which requires frequent administration and poor patient compliance. Objective: The aim of current study was to develop and evaluate water in oil microemulsion of Metronidazole with higher skin retention for treatment of inflammatory skin disorders. Methods: Pseudo ternary phase diagrams were used in order to select the appropriate ratio of surfactant and co-surfactant and identify the microemulsion area. The selected formulation consisted of Capmul MCM as oil, Tween 20 and Span 20 as surfactant and co-surfactant, respectively, and water. The formulation was characterized and evaluated for stability, Ex vivo permeation studies and in vivo anti-inflammatory effect (carrageenan induced rat paw edema, air pouch model), anti-psoriatic activity (mouse-tail test). Results: The particle size analyses revealed average diameter and polydispersity index of selected formulation to be 16 nm and 0.373, respectively. The results of ex vivo permeation studies showed statistically higher mean cumulative amount of MTZ retained in rat skin from microemulsion i.e. 21.90 ± 1.92 μg/cm2 which was 6.65 times higher as compared to Marketed gel (Metrogyl gel®) with 3.29 ± 0.11 μg/cm2 (p<0.05). The results of in vivo studies suggested the microemulsion based formulation of MTZ to be similar in efficacy to Metrogyl gel®. Conclusion: Research suggests efficacy of the developed MTZ loaded microemulsion in treatment of chronic skin inflammatory disorders.


2021 ◽  
Vol 22 (9) ◽  
pp. 4670
Author(s):  
Cinzia Buccoliero ◽  
Manuela Dicarlo ◽  
Patrizia Pignataro ◽  
Francesco Gaccione ◽  
Silvia Colucci ◽  
...  

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) is a protein that promotes transcription of numerous genes, particularly those responsible for the regulation of mitochondrial biogenesis. Evidence for a key role of PGC1α in bone metabolism is very recent. In vivo studies showed that PGC1α deletion negatively affects cortical thickness, trabecular organization and resistance to flexion, resulting in increased risk of fracture. Furthermore, in a mouse model of bone disease, PGC1α activation stimulates osteoblastic gene expression and inhibits atrogene transcription. PGC1α overexpression positively affects the activity of Sirtuin 3, a mitochondrial nicotinammide adenina dinucleotide (NAD)-dependent deacetylase, on osteoblastic differentiation. In vitro, PGC1α overexpression prevents the reduction of mitochondrial density, membrane potential and alkaline phosphatase activity caused by Sirtuin 3 knockdown in osteoblasts. Moreover, PGC1α influences the commitment of skeletal stem cells towards an osteogenic lineage, while negatively affects marrow adipose tissue accumulation. In this review, we will focus on recent findings about PGC1α action on bone metabolism, in vivo and in vitro, and in pathologies that cause bone loss, such as osteoporosis and type 2 diabetes.


1984 ◽  
Vol 2 (4) ◽  
pp. 282-286 ◽  
Author(s):  
S E Salmon ◽  
L Young ◽  
B Soehnlen ◽  
R Liu

The new anthracycline analog, esorubicin (4'deoxy-doxorubicin, ESO), was tested against fresh biopsies of human solid tumors in vitro in clonogenic assay and the results were contrasted to those obtained with doxorubicin (DOX). ESO appeared to be significantly more potent on a weight basis than DOX in these studies, and exhibited a spectrum of antitumor activity in vitro that was in general qualitatively similar to that observed with DOX. In vitro antitumor activity was observed in a wide variety of human cancers including anthracycline-sensitive tumor types. ESO has previously been reported to have decreased cardiac toxicity in preclinical models as compared to DOX. Comparative testing of these anthracyclines on granulocyte-macrophage colony-forming units (GM-CFUs) and tumor colony forming units (TCFUs) indicated that the in vitro GM-CFU assay is more sensitive to these myelosuppressive drugs than are TCFUs, and underscores the need for in vivo studies to determine normal tissue toxicity and the therapeutic index of a drug. Early results of phase I studies suggest that with respect to myelosuppression, the maximally tolerated dose of ESO will be about half that of DOX. The increased in vitro antitumor potency observed for ESO and a spectrum of activity (even at one half the dose of DOX) supports the broad testing of ESO in the clinic to determine whether it will prove to be a more effective and less toxic anthracycline.


2020 ◽  
Vol 7 (2) ◽  
pp. 21 ◽  
Author(s):  
Tyler L. Stevens ◽  
Michael J. Wallace ◽  
Mona El Refaey ◽  
Jason D. Roberts ◽  
Sara N. Koenig ◽  
...  

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder characterized by structural and electrical cardiac abnormalities, including myocardial fibro-fatty replacement. Its pathological ventricular substrate predisposes subjects to an increased risk of sudden cardiac death (SCD). ACM is a notorious cause of SCD in young athletes, and exercise has been documented to accelerate its progression. Although the genetic culprits are not exclusively limited to the intercalated disc, the majority of ACM-linked variants reside within desmosomal genes and are transmitted via Mendelian inheritance patterns; however, penetrance is highly variable. Its natural history features an initial “concealed phase” that results in patients being vulnerable to malignant arrhythmias prior to the onset of structural changes. Lack of effective therapies that target its pathophysiology renders management of patients challenging due to its progressive nature, and has highlighted a critical need to improve our understanding of its underlying mechanistic basis. In vitro and in vivo studies have begun to unravel the molecular consequences associated with disease causing variants, including altered Wnt/β-catenin signaling. Characterization of ACM mouse models has facilitated the evaluation of new therapeutic approaches. Improved molecular insight into the condition promises to usher in novel forms of therapy that will lead to improved care at the clinical bedside.


2020 ◽  
Vol 36 (6) ◽  
pp. 444-456
Author(s):  
David C. Kingston ◽  
Stacey M. Acker

A musculoskeletal model of the right lower limb was developed to estimate 3D tibial contact forces in high knee flexion postures. This model determined the effect of intersegmental contact between thigh–calf and heel–gluteal structures on tibial contact forces. This model includes direct tracking and 3D orientation of intersegmental contact force, femoral translations from in vivo studies, wrapping of knee extensor musculature, and a novel optimization constraint for multielement muscle groups. Model verification consisted of calculating the error between estimated tibial compressive forces and direct measurements from the Grand Knee Challenge during movements to ∼120° of knee flexion as no high knee flexion data are available. Tibial compression estimates strongly fit implant data during walking (R2 = .83) and squatting (R2 = .93) with a root mean squared difference of .47 and .16 body weight, respectively. Incorporating intersegmental contact significantly reduced model estimates of peak tibial anterior–posterior shear and increased peak medial–lateral shear during the static phase of high knee flexion movements by an average of .33 and .07 body weight, respectively. This model supports prior work in that intersegmental contact is a critical parameter when estimating tibial contact forces in high knee flexion movements across a range of culturally and occupationally relevant postures.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2467-2467
Author(s):  
Richard A. Campbell ◽  
Haiming Chen ◽  
Daocheng Zhu ◽  
Janice C. Santos ◽  
Benjamin Bonavida ◽  
...  

Abstract Arsenic trioxide (ATO) induces apoptosis of plasma cells through a number of mechanisms including inhibiting DNA binding by NF-κB. These results suggest that this agent may be synergistic when combined with other active anti-myeloma drugs. To evaluate this we examined the effect of ATO alone and in combination with anti-myeloma treatments evaluated in vitro with MTT assays and using our severe combined immunodeficient (SCID)-hu murine myeloma models. First, we determined the effects of combining ATO with bortezomib or melphalan on the myeloma cell lines RPMI8226 and U266. Cell proliferation assays demonstrated marked synergistic anti-proliferative effects of ATO at concentrations ranging from 5x10−5M – 5x10−9M and melphalan concentrations ranging from 3x10−5M – 3x10−9M. Similar effects were observed when these cell lines were treated with bortezomib and varying concentrations of ATO (5x10−5 M – 5x10−10 M). We also investigated the potential of ATO to increase the efficacy of anti-myeloma therapies in our SCID-hu murine model LAGλ–1 (Yang H et al. Blood 2002). Each SCID mouse was implanted with a 0.5 cm3 LAGλ–1 tumor fragment into the left hind limb muscle. Mice were treated with ATO alone at 6.0 mg/kg, 1.25 mg/kg, 0.25 mg/kg, and 0.05 mg/kg intraperitoneally (IP) daily x5/week starting 19 days post-implantation. Mice receiving the highest dose of ATO (6.0 mg/kg) showed marked inhibition of tumor growth and reduction of paraprotein levels while there was no effect observed in all other treatment groups. Next, 27 days following implantation of our LAGλ–1 intramuscular (IM) tumor, LAGλ–1 mice were treated with ATO (1.25 mg/kg) IP, bortezomib (0.25 mg/kg), or the combination of both drugs at these doses in the schedules outlined above. ATO or bortezomib treatment alone had no anti-myeloma effects at these low doses consistent with our previous results whereas there was a marked decrease in both tumor volume (57%) and paraprotein levels (53%) in mice receiving the combined therapy. The combination of melphalan and ATO was also evaluated in this model. LAGλ–1 bearing mice received therapy with melphalan IP x1/weekly at 12.0 mg/kg, 6.0 mg/kg, 0.6 mg/kg, and 0.06 mg/kg starting 22 days post-implantation and showed no anti-myeloma effects. Twenty-eight days following implantation of LAGλ–1 tumor, mice received ATO (1.25 mg/kg) or melphalan (0.6 mg/kg) alone at doses without anti-myeloma effects, or the combination of these agents at these doses. The animals treated with these drugs alone showed a similar growth and increase in paraprotein levels to control mice whereas the combination of ATO and melphalan at these low doses markedly suppressed the growth of the tumor by &gt;50% and significantly reduced serum paraprotein levels. These in vitro and in vivo studies suggest that the addition of ATO to other anti-myeloma agents is likely to result in improved outcomes for patients with drug resistant myeloma. Based on these results, these combinations are now in clinical trials with promising early results for patients with drug resistant myeloma.


Viruses ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1094 ◽  
Author(s):  
Anna Schachner ◽  
Gabriel Gonzalez ◽  
Lukas Endler ◽  
Kimihito Ito ◽  
Michael Hess

After analyzing 27 new genomes from fowl adenovirus (FAdV) field isolates and so-far unsequenced prototypes, we report the first evidence for recombination in FAdVs. Recombination was confined to species FAdV-D and FAdV-E, accommodating the largest number of, and the intraspecies-wise most differentiated, types. The majority of detected events occurred in FAdV-E, involving segments with parental origin of all constitutive types. Together with the diversity of breakpoints, this suggests widespread recombination in this species. With possible constraints through species-specific genes and diversification patterns, the recombinogenic potential of FAdVs attains particular interest for inclusion body hepatitis (IBH), an important disease in chickens, caused by types from the recombination-prone species. Autonomously evolving, recombinant segments were associated with major sites under positive selection, among them the capsid protein hexon and fiber genes, the right-terminal ORFs 19, 25, and the ORF20/20A family. The observed mosaicism in genes indicated as targets of adaptive pressures points toward an immune evasion strategy. Intertypic hexon/fiber-recombinants demonstrated hybrid neutralization profiles, retrospectively explaining reported controversies on reference strains B3-A, T8-A, and X11-A. Furthermore, cross-neutralization supported sequence-based evidence for interdomain recombination in fiber and contributed to a tentatively new type. Overall, our findings challenge the purported uniformity of types responsible for IBH, urging more complete identification strategies for FAdVs. Finally, important consequences arise for in vivo studies investigating cross-protection against IBH.


1983 ◽  
Vol 61 (10) ◽  
pp. 1162-1167 ◽  
Author(s):  
Thomas E. Tenner Jr. ◽  
Sasanka Ramanadham ◽  
May C. M. Yang ◽  
Peter K. T. Pang

Bovine parathyroid hormone and its N-terminal (1–34) peptide fragment (bPTH-(1–34)) are known to possess direct hypotensive activity in the rat. The purpose of the present study was to determine if bPTH-(1–34) possessed a direct chronotropic action as well. In vivo studies revealed that bPTH-(1–34) did produce a chronotropic effect in the rat comprising both a direct component as well as a reflex tachycardia related to its hypotensive actions. In vitro studies of isolated right atria indicated that while bPTH-(1–34) had no positive inotropic effect, it did produce significant chronotropic effects which were direct and dose-dependent. The potency of bPTH-(1–34) was found to be similar to that of isoproterenol, however, it was only one-third as effective as isoproterenol in maximally increasing atrial rate. A slight but significant increase in atrial cyclic AMP was generated prior to the chronotropic actions of bPTH-(1–34).


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Frederick Annang ◽  
Guiomar Pérez-Moreno ◽  
Caridad Díaz ◽  
Victor González-Menéndez ◽  
Nuria de Pedro Montejo ◽  
...  

Abstract Background Malaria is a global health problem for which novel therapeutic compounds are needed. To this end, a recently published novel family of antiplasmodial macrolides, strasseriolides A–D, was herein subjected to in vivo efficacy studies and preclinical evaluation in order to identify the most promising candidate(s) for further development. Methods Preclinical evaluation of strasseriolides A–D was performed by MTT-based cytotoxicity assay in THLE-2 (CRL-2706) liver cells, cardiotoxicity screening using the FluxOR™ potassium assay in hERG expressed HEK cells, LC–MS-based analysis of drug-drug interaction involving CYP3A4, CYP2D6 and CYP2C9 isoforms inhibition and metabolic stability assays in human liver microsomes. Mice in vivo toxicity studies were also accomplished by i.v. administration of the compounds (vehicle: 0.5% HPMC, 0.5% Tween 80, 0.5% Benzyl alcohol) in mice at 25 mg/kg dosage. Plasma were prepared from mice blood samples obtained at different time points (over a 24-h period), and analysed by LC-MS to quantify compounds. The most promising compounds, strasseriolides C and D, were subjected to a preliminary in vivo efficacy study in which transgenic GFP-luciferase expressing Plasmodium berghei strain ANKA-infected Swiss Webster female mice (n = 4–5) were treated 48 h post-infection with an i.p. dosage of strasseriolide C at 50 mg/kg and strasseriolide D at 22 mg/kg for four days after which luciferase activity was quantified on day 5 in an IVIS® Lumina II imager. Results Strasseriolides A–D showed no cytotoxicity, no carditoxicity and no drug-drug interaction problems in vitro with varying intrinsic clearance (CLint). Only strasseriolide B was highly toxic to mice in vivo (even at 1 mg/kg i.v. dosage) and, therefore, discontinued in further in vivo studies. Strasseriolide D showed statistically significant activity in vivo giving rise to lower parasitaemia levels (70% lower) compared to the controls treated with vehicle. Conclusions Animal efficacy and preclinical evaluation of the recently discovered potent antiplasmodial macrolides, strasseriolides A–D, led to the identification of strasseriolide D as the most promising compound for further development. Future studies dealing on structure optimization, formulation and establishment of optimal in vivo dosage explorations of this novel compound class could enhance their clinical potency and allow for progress to later stages of the developmental pipeline.


2020 ◽  
Vol 319 (3) ◽  
pp. F541-F551
Author(s):  
Linto Thomas ◽  
Jianxiang Xue ◽  
Viktor N. Tomilin ◽  
Oleh M. Pochynyuk ◽  
Jessica A. Dominguez Rieg ◽  
...  

Plasma phosphate (Pi) levels are tightly controlled, and elevated plasma Pi levels are associated with an increased risk of cardiovascular complications and death. Two renal transport proteins mediate the majority of Pi reabsorption: Na+-phosphate cotransporters Npt2a and Npt2c, with Npt2a accounting for 70–80% of Pi reabsorption. The aim of the present study was to determine the in vitro effects of a novel Npt2a inhibitor (PF-06869206) in opossum kidney (OK) cells as well as determine its selectivity in vivo in Npt2a knockout (Npt2a−/−) mice. In OK cells, Npt2a inhibitor caused dose-dependent reductions of Na+-dependent Pi uptake (IC50: ~1.4 μmol/L), whereas the unselective Npt2 inhibitor phosphonoformic acid (PFA) resulted in an ~20% stronger inhibition of Pi uptake. The dose-dependent inhibitory effects were present after 24 h of incubation with both low- and high-Pi media. Michaelis-Menten kinetics in OK cells identified an ~2.4-fold higher Km for Pi in response to Npt2a inhibition with no significant change in apparent Vmax. Higher parathyroid hormone concentrations decreased Pi uptake equivalent to the maximal inhibitory effect of Npt2a inhibitor. In vivo, the Npt2a inhibitor induced a dose-dependent increase in urinary Pi excretion in wild-type mice (ED50: ~23 mg/kg), which was completely absent in Npt2a−/− mice, alongside a lack of decrease in plasma Pi. Of note, the Npt2a inhibitor-induced dose-dependent increase in urinary Na+ excretion was still present in Npt2a−/− mice, a response possibly mediated by an off-target acute inhibitory effect of the Npt2a inhibitor on open probability of the epithelial Na+ channel in the cortical collecting duct.


Sign in / Sign up

Export Citation Format

Share Document