scholarly journals Small-Molecule Amyloid Beta-Aggregation Inhibitors in Alzheimer's Disease Drug Development

2019 ◽  
Vol 01 (01) ◽  
pp. e22-e32
Author(s):  
Sharmin Reza Chowdhury ◽  
Fangzhou Xie ◽  
Jinxin Gu ◽  
Lei Fu

AbstractAlzheimer's disease (AD) is still an incurable neurodegenerative disease that causes dementia. AD changes the brain function that, over time, impairs memory and diminishes judgment and reasoning ability. Pathophysiology of AD is complex. Till now the cause of AD remains unknown, but risk factors include family history and genetic predisposition. The drugs previously approved for AD treatment do not modify the disease process and only provide symptomatic improvement. Over the past few decades, research has led to significant progress in the understanding of the disease, leading to several novel strategies that may modify the disease process. One of the major developments in this direction is the amyloid β (Aβ) aggregation. Small molecules could block the initial stages of Aβ aggregation, which could be the starting point for the design and development of new AD drugs in the near future. In this review we summarize the most promising small-molecule Aβ-aggregation inhibitors including natural compounds, novel small molecules, and also those are in clinical trials. Moreover, we briefly summarized some reported docking studies of small-molecule Aβ aggregation inhibitors. These will give us an idea about the chemical features required to design novel small molecules with anti-Aβ aggregation properties.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1946
Author(s):  
Nitin Chitranshi ◽  
Ashutosh Kumar ◽  
Samran Sheriff ◽  
Veer Gupta ◽  
Angela Godinez ◽  
...  

Amyloid precursor protein (APP), upon proteolytic degradation, forms aggregates of amyloid β (Aβ) and plaques in the brain, which are pathological hallmarks of Alzheimer’s disease (AD). Cathepsin B is a cysteine protease enzyme that catalyzes the proteolytic degradation of APP in the brain. Thus, cathepsin B inhibition is a crucial therapeutic aspect for the discovery of new anti-Alzheimer’s drugs. In this study, we have employed mixed-feature ligand-based virtual screening (LBVS) by integrating pharmacophore mapping, docking, and molecular dynamics to detect small, potent molecules that act as cathepsin B inhibitors. The LBVS model was generated by using hydrophobic (HY), hydrogen bond acceptor (HBA), and hydrogen bond donor (HBD) features, using a dataset of 24 known cathepsin B inhibitors of both natural and synthetic origins. A validated eight-feature pharmacophore hypothesis (Hypo III) was utilized to screen the Maybridge chemical database. The docking score, MM-PBSA, and MM-GBSA methodology was applied to prioritize the lead compounds as virtual screening hits. These compounds share a common amide scaffold, and showed important interactions with Gln23, Cys29, His110, His111, Glu122, His199, and Trp221. The identified inhibitors were further evaluated for cathepsin-B-inhibitory activity. Our study suggests that pyridine, acetamide, and benzohydrazide compounds could be used as a starting point for the development of novel therapeutics.


2021 ◽  
pp. 116357
Author(s):  
Rohmad Yudi Utomo ◽  
Yasunobu Asawa ◽  
Satoshi Okada ◽  
Hyun Seung Ban ◽  
Atsushi Yoshimori ◽  
...  

2021 ◽  
Author(s):  
Yiran Huang ◽  
Liang Sun ◽  
Liviu M. Mirica

<div>Protein misfolding and metal dishomeostasis are two key</div><div>pathological factors of Alzheimer’s disease. Previous studies have showed that Cu‐mediated Aβ aggregation pathways lead to formation of neurotoxic Aβ oligomers. Herein, we reported a series of picolinic acid‐based Cu‐activatable sensors, which can be used for the fluorescence imaging of Cu‐rich Aβ aggregates.</div>


2020 ◽  
Author(s):  
Sarah R Ball ◽  
Julius S P Adamson ◽  
Michael A Sullivan ◽  
Manuela R Zimmermann ◽  
Victor Lo ◽  
...  

AbstractThe amyloid-β peptide, the main protein component of amyloid plaques in Alzheimer’s disease, plays a key role in the neurotoxicity associated with the condition through the formation of small toxic oligomer species which mediate the disruption of calcium and glutamate homeostasis. The lack of therapeutic benefit associated with removal of mature amyloid-β fibrils has focused attention on the toxic oligomeric species formed during the process of fibril assembly. Here, we present the design and synthesis of a family of perphenazine-macrocyle conjugates. We find that two-armed perphenazine-cyclam conjugates divert the monomeric form of the amyloid-β peptide away from the amyloidogenic pathway into amorphous aggregates that are not toxic to differentiated SH-SY5Y cells in vitro. This strategy prevents the formation of damaging amyloid oligomers. Kinetic analysis of the effects of these compounds on the assembly pathway, together with NMR spectroscopy, identifies rapid monomer sequestration as the underlying neuroprotective mechanism. The ability to specifically target the monomeric form of amyloid-β allows for further understanding of the impact of the multiple species formed between peptide biogenesis and plaque deposition. The modular, three-dimensional structure of these compounds provides a starting point for the design of more potent modulators of this amyloid-forming peptide, and can be adapted to probe the protein self-assembly pathways associated with other proteinopathies.Significance statementThe aggregation pathway of the amyloid-β (Aβ) peptide in Alzheimer’s disease is complex and involves multiple different species. An inability to isolate and study the impact of distinct Aβ species has undermined efforts to develop effective therapies. To address this issue, we have developed a series of molecules that specifically sequester the monomeric form of the highly aggregation-prone Aβ42 peptide. Interaction with these molecules diverts Aβ42 from the amyloidogenic pathway and prevents formation of toxic oligomeric species. We use kinetic analysis and NMR spectroscopy to identify rapid monomer sequestration as the underlying neuroprotective mechanism. Future rational development of these molecules and characterisation of their interactions with Aβ will delineate the impact of different Aβ oligomers on neurobiology and pathology.


2020 ◽  
Vol 21 (16) ◽  
pp. 5858 ◽  
Author(s):  
Md. Sahab Uddin ◽  
Md. Tanvir Kabir ◽  
Md. Sohanur Rahman ◽  
Tapan Behl ◽  
Philippe Jeandet ◽  
...  

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder related to age, characterized by the cerebral deposition of fibrils, which are made from the amyloid-β (Aβ), a peptide of 40–42 amino acids. The conversion of Aβ into neurotoxic oligomeric, fibrillar, and protofibrillar assemblies is supposed to be the main pathological event in AD. After Aβ accumulation, the clinical symptoms fall out predominantly due to the deficient brain clearance of the peptide. For several years, researchers have attempted to decline the Aβ monomer, oligomer, and aggregate levels, as well as plaques, employing agents that facilitate the reduction of Aβ and antagonize Aβ aggregation, or raise Aβ clearance from brain. Unluckily, broad clinical trials with mild to moderate AD participants have shown that these approaches were unsuccessful. Several clinical trials are running involving patients whose disease is at an early stage, but the preliminary outcomes are not clinically impressive. Many studies have been conducted against oligomers of Aβ which are the utmost neurotoxic molecular species. Trials with monoclonal antibodies directed against Aβ oligomers have exhibited exciting findings. Nevertheless, Aβ oligomers maintain equivalent states in both monomeric and aggregation forms; so, previously administered drugs that precisely decrease Aβ monomer or Aβ plaques ought to have displayed valuable clinical benefits. In this article, Aβ-based therapeutic strategies are discussed and several promising new ways to fight against AD are appraised.


2019 ◽  
Vol 244 (18) ◽  
pp. 1665-1679 ◽  
Author(s):  
Hye-Sun Lim ◽  
Yu Jin Kim ◽  
Eunjin Sohn ◽  
Jiyeon Yoon ◽  
Bu-Yeo Kim ◽  
...  

Annona atemoya is a hybrid of Annona squamosa and Annona cherimola that grow in several subtropical or tropical areas such as Florida in the US, Philippines, Cuba, Jamaica, Taiwan, and Jeju in South Korea. We report that the A. atemoya leaves (AAL) have inhibitory effects on the pathogenesis and regulatory mechanisms of Alzheimer’s disease (AD). Ethanol extract of AAL prevented amyloid-β (Aβ) aggregation and increased free radical scavenging activity. In addition, AAL extract exerted protective effects against neuronal cell death in HT22 hippocampal cells. Moreover, oral administration of AAL extract significantly improved memory loss in the passive avoidance task and Y-maze test, as well as downregulated the expression of neuronal markers neuronal nuclei and brain-derived neurotrophic factor in Aβ-injected AD mice. To verify the molecular mechanisms responsible for anti-AD actions of AAL, we conducted the antibody microarray analysis and found that epidermal growth factor receptor/G protein-coupled receptor kinase 2 signaling was activated in neuronal cells and AD-like mouse models. Additionally, quantitative analyses of the six standard compounds using high-performance liquid chromatography revealed that rutin is the most abundant compound of AAL. Furthermore, efficacy analyses of six standard compounds showed that rutin and isoquercitrin had significant inhibitory activity on Aβ aggregation. Taken together with biological activity and the content of compounds, rutin maybe a bioactive compound of AAL in the AD pathogenesis. Overall, our findings provide the first scientific support for the therapeutic effects of AAL in AD and AD-related disorders. Impact statement Our study was aimed to find a novel candidate drug for Alzheimer’s disease (AD) using natural products. We assessed the effects of Annona atemoya extracts on crucial events in the pathogenesis of AD. A. atemoya leaf (AAL) extract significantly inhibited amyloid-β aggregation, oxidative stress, neuronal cell death, and memory impairment through the epidermal growth factor receptor/G protein-coupled receptor kinase 2 pathway. Simultaneous analysis using HPLC determined six standard compounds of AAL extract, and rutin was identified as a bioactive compound. Of note, the anti-AD activity of AAL extract was more significant compared to other extracts from medicinal plants of which efficacy was previously reported. The potential of AAL extract as an anti-AD agent may provide insight into the new drug development for AD treatment.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Yao-Hsiang Shih ◽  
Ling-Hsien Tu ◽  
Ting-Yu Chang ◽  
Kiruthika Ganesan ◽  
Wei-Wei Chang ◽  
...  

AbstractTDP-43 inclusions are found in many Alzheimer’s disease (AD) patients presenting faster disease progression and greater brain atrophy. Previously, we showed full-length TDP-43 forms spherical oligomers and perturbs amyloid-β (Aβ) fibrillization. To elucidate the role of TDP-43 in AD, here, we examined the effect of TDP-43 in Aβ aggregation and the attributed toxicity in mouse models. We found TDP-43 inhibited Aβ fibrillization at initial and oligomeric stages. Aβ fibrillization was delayed specifically in the presence of N-terminal domain containing TDP-43 variants, while C-terminal TDP-43 was not essential for Aβ interaction. TDP-43 significantly enhanced Aβ’s ability to impair long-term potentiation and, upon intrahippocampal injection, caused spatial memory deficit. Following injection to AD transgenic mice, TDP-43 induced inflammation, interacted with Aβ, and exacerbated AD-like pathology. TDP-43 oligomers mostly colocalized with intracellular Aβ in the brain of AD patients. We conclude that TDP-43 inhibits Aβ fibrillization through its interaction with Aβ and exacerbates AD pathology.


ACS Omega ◽  
2020 ◽  
Vol 5 (32) ◽  
pp. 20250-20260
Author(s):  
Laura W. Simpson ◽  
Gregory L. Szeto ◽  
Hacene Boukari ◽  
Theresa A. Good ◽  
Jennie B. Leach

2021 ◽  
Vol 118 (4) ◽  
pp. e2023089118 ◽  
Author(s):  
Ujjayini Ghosh ◽  
Kent R. Thurber ◽  
Wai-Ming Yau ◽  
Robert Tycko

Amyloid-β (Aβ) fibrils exhibit self-propagating, molecular-level polymorphisms that may contribute to variations in clinical and pathological characteristics of Alzheimer’s disease (AD). We report the molecular structure of a specific fibril polymorph, formed by 40-residue Aβ peptides (Aβ40), that is derived from cortical tissue of an AD patient by seeded fibril growth. The structure is determined from cryogenic electron microscopy (cryoEM) images, supplemented by mass-per-length (MPL) measurements and solid-state NMR (ssNMR) data. Previous ssNMR studies with multiple AD patients had identified this polymorph as the most prevalent brain-derived Aβ40 fibril polymorph from typical AD patients. The structure, which has 2.8-Å resolution according to standard criteria, differs qualitatively from all previously described Aβ fibril structures, both in its molecular conformations and its organization of cross-β subunits. Unique features include twofold screw symmetry about the fibril growth axis, despite an MPL value that indicates three Aβ40 molecules per 4.8-Å β-sheet spacing, a four-layered architecture, and fully extended conformations for molecules in the central two cross-β layers. The cryoEM density, ssNMR data, and MPL data are consistent with β-hairpin conformations for molecules in the outer cross-β layers. Knowledge of this brain-derived fibril structure may contribute to the development of structure-specific amyloid imaging agents and aggregation inhibitors with greater diagnostic and therapeutic utility.


Sign in / Sign up

Export Citation Format

Share Document