AAZTA5.SA.KuE, a versatile tool for theranostic application – labeling, in vitro, and first in vivo-investigation of [ 177 Lu]Lu- AAZTA 5 .SA.KuE

2020 ◽  
Author(s):  
L Greifenstein ◽  
T Grus ◽  
D Mathé ◽  
R Bergmann ◽  
F Rösch
Keyword(s):  
2018 ◽  
Vol 1 (5) ◽  
pp. e201800148 ◽  
Author(s):  
Britta Seip ◽  
Guénaël Sacheau ◽  
Denis Dupuy ◽  
C Axel Innis

Although it is known that the amino acid sequence of a nascent polypeptide can impact its rate of translation, dedicated tools to systematically investigate this process are lacking. Here, we present high-throughput inverse toeprinting, a method to identify peptide-encoding transcripts that induce ribosomal stalling in vitro. Unlike ribosome profiling, inverse toeprinting protects the entire coding region upstream of a stalled ribosome, making it possible to work with random or focused transcript libraries that efficiently sample the sequence space. We used inverse toeprinting to characterize the stalling landscapes of free and drug-boundEscherichia coliribosomes, obtaining a comprehensive list of arrest motifs that were validated in vivo, along with a quantitative measure of their pause strength. Thanks to the modest sequencing depth and small amounts of material required, inverse toeprinting provides a highly scalable and versatile tool to study sequence-dependent translational processes.


Micromachines ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 192
Author(s):  
Hiep Xuan Cao ◽  
Daewon Jung ◽  
Han-Sol Lee ◽  
Gwangjun Go ◽  
Minghui Nan ◽  
...  

The ability to manipulate therapeutic agents in fluids is of interest to improve the efficiency of targeted drug delivery. Ultrasonic manipulation has great potential in the field of therapeutic applications as it can trap and manipulate micro-scale objects. Recently, several methods of ultrasonic manipulation have been studied through standing wave, traveling wave, and acoustic streaming. Among them, the traveling wave based ultrasonic manipulation is showing more advantage for in vivo environments. In this paper, we present a novel ultrasonic transducer (UT) array with a hemispherical arrangement that generates active traveling waves with phase modulation to manipulate a micromotor in water. The feasibility of the method could be demonstrated by in vitro and ex vivo experiments conducted using a UT array with 16 transducers operating at 1 MHz. The phase of each transducer was controlled independently for generating a twin trap and manipulation of a micromotor in 3D space. This study shows that the ultrasonic manipulation device using active traveling waves is a versatile tool that can be used for precise manipulation of a micromotor inserted in a human body and targeted for drug delivery.


2021 ◽  
Author(s):  
Zhaofa Wu ◽  
Kaikai He ◽  
Yue Chen ◽  
Hongyu Li ◽  
Sunlei Pan ◽  
...  

SUMMARYThe purinergic transmitter ATP (adenosine 5’-triphosphate) plays an essential role in both the central and peripheral nervous systems, and the ability to directly measure extracellular ATP in real time will increase our understanding of its physiological functions. We developed an ultrasensitive GPCRActivation‒Based ATP sensor called GRABATP1.0, with a robust fluorescence response to extracellular ATP when expressed in several cell types. This sensor has sub-second kinetics, ATP affinity in the range of tens of nanomolar, and can be used to localize ATP release with subcellular resolution. Using this sensor, we monitored ATP release under a variety of in vitro and in vivo conditions, including primary hippocampal neurons, a zebrafish model of injury-induced ATP release, and LPS-induced ATP-release events in individual astrocytes in the mouse cortex measured using in vivo two-photon imaging. Thus, the GRABATP1.0 sensor is a sensitive, versatile tool for monitoring ATP release and dynamics under both physiological and pathophysiological conditions.


Biomolecules ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1695
Author(s):  
Marco Erreni ◽  
Tilo Schorn ◽  
Francesca D’Autilia ◽  
Andrea Doni

Molecular imaging is constantly growing in different areas of preclinical biomedical research. Several imaging methods have been developed and are continuously updated for both in vivo and in vitro applications, in order to increase the information about the structure, localization and function of molecules involved in physiology and disease. Along with these progresses, there is a continuous need for improving labeling strategies. In the last decades, the single domain antigen-binding fragments nanobodies (Nbs) emerged as important molecular imaging probes. Indeed, their small size (~15 kDa), high stability, affinity and modularity represent desirable features for imaging applications, providing higher tissue penetration, rapid targeting, increased spatial resolution and fast clearance. Accordingly, several Nb-based probes have been generated and applied to a variety of imaging modalities, ranging from in vivo and in vitro preclinical imaging to super-resolution microscopy. In this review, we will provide an overview of the state-of-the-art regarding the use of Nbs in several imaging modalities, underlining their extreme versatility and their enormous potential in targeting molecules and cells of interest in both preclinical and clinical studies.


2021 ◽  
Vol 220 (9) ◽  
Author(s):  
Magdalena P. Crossley ◽  
Joshua R. Brickner ◽  
Chenlin Song ◽  
Su Mon Thin Zar ◽  
Su S. Maw ◽  
...  

R-loops are three-stranded nucleic acid structures with both physiological and pathological roles in cells. R-loop imaging generally relies on detection of the RNA–DNA hybrid component of these structures using the S9.6 antibody. We show that the use of this antibody for imaging can be problematic because it readily binds to double-stranded RNA (dsRNA) in vitro and in vivo, giving rise to nonspecific signal. In contrast, purified, catalytically inactive human RNase H1 tagged with GFP (GFP-dRNH1) is a more specific reagent for imaging RNA–DNA hybrids. GFP-dRNH1 binds strongly to RNA–DNA hybrids but not to dsRNA oligonucleotides in fixed human cells and is not susceptible to binding endogenous RNA. Furthermore, we demonstrate that purified GFP-dRNH1 can be applied to fixed cells to detect hybrids after their induction, thereby bypassing the need for cell line engineering. GFP-dRNH1 therefore promises to be a versatile tool for imaging and quantifying RNA–DNA hybrids under a wide range of conditions.


2021 ◽  
Author(s):  
Karla A. Schwenke ◽  
Joo-Hee Waelzlein ◽  
Agnieszka Bauer ◽  
Achim Thomzig ◽  
Michael Beekes

Since the beginning prion research has been largely dependent on animal models for deciphering the disease, drug development or prion detection and quantification. Thereby, ethical as well as cost and labour-saving aspects call for alternatives in vitro. Cell models can replace or at least complement animal studies, but their number is still limited and the application usually restricted to certain strains and host species due to often strong transmission barriers. Bank voles promise to be an exception as they or materials prepared from them are uniquely susceptible to prions from various species in vivo, in vitro and in cell-free applications. Here we present a mainly astrocyte-based primary glia cell assay from bank vole, which is infectible with scrapie strains from bank vole, mouse and hamster. Stable propagation of bank vole-adapted RML, murine 22L and RML, and hamster 263K scrapie is detectable from 20 or 30 days post exposure onwards. Thereby, the infected bank vole glia cells show similar or even faster prion propagation than likewise infected glia cells of the corresponding murine or hamster hosts. We propose that our bank vole glia cell assay could be a versatile tool for studying and comparing multiple prion strains with different species backgrounds in a single cell assay.


2006 ◽  
Vol 01 (04) ◽  
pp. 411-421 ◽  
Author(s):  
EMILIA-LAURA MUNTEANU ◽  
ANJA LEA OLSEN ◽  
IVA TOLIC-NØRRELYKKE ◽  
HENRIK FLYVBJERG ◽  
LENE ODDERSHEDE ◽  
...  

Optical tweezers are a versatile tool in biophysics and have matured from a tool of manipulation to a tool of precise measurements. We argue here that the data analysis with advantage can be developed to a level of sophistication that matches that of the instrument. We review methods of analysis of optical tweezers data, primarily based on the power spectra of time series of positions for trapped spherical objects. The majority of precise studies in the literature are performed on in vitro systems, whereas in the present work, an example of an in vivo system is presented for which precise power spectral analysis is both useful and necessary. The biological system is the cytoplasm of fission yeast, Schizosaccharomyces pombe in which we observe subdiffusion of lipid granules. In a search for the cause of subdiffusion, we chemically disrupt the actin network in the cytoplasm and further consider in vitro networks of filamenteous actin undergoing similar chemical disruption.


Blood ◽  
2011 ◽  
Vol 118 (13) ◽  
pp. 3694-3697 ◽  
Author(s):  
Xiuling Xu ◽  
Katharina von Löhneysen ◽  
Katrin Soldau ◽  
Deborah Noack ◽  
Andrew Vu ◽  
...  

Abstract Maintenance of a reducing redox balance is a critical physiologic function of red cells (RBC) that can be perturbed in variety of RBC pathologies. Here we describe a new approach to evaluate in vivo RBC redox status using a redox sensitive GFP (roGFP2) sensor under control of a β-globin mini-promoter, directing expression specifically to erythroid cells. RoGFP2 expressing RBCs demonstrate ratiometric and reversible shifts in fluorescence on exposure to oxidants and reductants. We demonstrate that roGFP2 expressing RBC can be used to monitor thiol redox status during in vitro phenylhydrazine treatment and over the course of in vivo RBC aging, where a shift to a more oxidized state is observed in older cells. Thus, roGFP2 transgenic mice are a new and versatile tool that can be used to probe how RBC redox status responds in the context of drug therapy, physiologic stressors and pathologic states.


Micromachines ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 599 ◽  
Author(s):  
Neda Azizipour ◽  
Rahi Avazpour ◽  
Derek H. Rosenzweig ◽  
Mohamad Sawan ◽  
Abdellah Ajji

Following the advancements in microfluidics and lab-on-a-chip (LOC) technologies, a novel biomedical application for microfluidic based devices has emerged in recent years and microengineered cell culture platforms have been created. These micro-devices, known as organ-on-a-chip (OOC) platforms mimic the in vivo like microenvironment of living organs and offer more physiologically relevant in vitro models of human organs. Consequently, the concept of OOC has gained great attention from researchers in the field worldwide to offer powerful tools for biomedical researches including disease modeling, drug development, etc. This review highlights the background of biochip development. Herein, we focus on applications of LOC devices as a versatile tool for POC applications. We also review current progress in OOC platforms towards body-on-a-chip, and we provide concluding remarks and future perspectives for OOC platforms for POC applications.


2009 ◽  
Vol 184 (1) ◽  
pp. 25-36 ◽  
Author(s):  
Valery Grinevich ◽  
Alexander Kolleker ◽  
Marina Eliava ◽  
Naoki Takada ◽  
Hiroshi Takuma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document