scholarly journals The Effect of Glyphosate on Human Sperm: In Vitro Approximation

2021 ◽  
Vol 30 (03) ◽  
pp. e194-e198
Author(s):  
Mateo Morales Velásquez ◽  
Valentina Velásquez Rivera ◽  
Walter D. Cardona Maya

Abstract Introduction Glyphosate is an herbicide used to eradicate illicit crops; however, its use is controversial due to different health problems associated with it. The present study aims to evaluate the effects of glyphosate on human sperm in vitro. Methods Twenty-two semen samples from healthy normozoospermic men were included; 11 semen samples were incubated with Panzer (INVESA S.A., Antiquia, Colombia) and 11 with Roundup (Monsanto Company, MO, USA). The changes in motility and viability were observed. Functional seminal parameters were evaluated as well. Results The samples exposed to glyphosate showed less motility and viability; a decrease in the potential of the mitochondrial membrane was observed, and an increase in the lipoperoxidation of the membrane was evidenced. Conclusion Based on the present results, we concluded that glyphosate has cytotoxic potential for exposed people and may affect their fertility.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Miroslava Cedikova ◽  
Michaela Miklikova ◽  
Lenka Stachova ◽  
Martina Grundmanova ◽  
Zdenek Tuma ◽  
...  

Propolis is a natural product that honeybees collect from various plants. It is known for its beneficial pharmacological effects. The aim of our study was to evaluate the impact of propolis on human sperm motility, mitochondrial respiratory activity, and membrane potential. Semen samples from 10 normozoospermic donors were processed according to the World Health Organization criteria. Propolis effects on the sperm motility and mitochondrial activity parameters were tested in the fresh ejaculate and purified spermatozoa. Propolis preserved progressive motility of spermatozoa in the native semen samples. Oxygen consumption determined in purified permeabilized spermatozoa by high-resolution respirometry in the presence of adenosine diphosphate and substrates of complex I and complex II (stateOXPHOSI+II) was significantly increased in the propolis-treated samples. Propolis also increased uncoupled respiration in the presence of rotenone (stateETSII) and complex IV activity, but it did not influence state LEAK induced by oligomycin. Mitochondrial membrane potential was not affected by propolis. This study demonstrates that propolis maintains sperm motility in the native ejaculates and increases activities of mitochondrial respiratory complexes II and IV without affecting mitochondrial membrane potential. The data suggest that propolis improves the total mitochondrial respiratory efficiency in the human spermatozoa in vitro thereby having potential to improve sperm motility.


2010 ◽  
Vol 9 (9) ◽  
pp. 1297-1304
Author(s):  
Alice Raducanu ◽  
Aurica Suvergel ◽  
George Darie ◽  
Ileana Rau ◽  
Constantin Grigoriu ◽  
...  

2019 ◽  
Vol 19 (13) ◽  
pp. 1075-1091 ◽  
Author(s):  
Karla Mirella Roque Marques ◽  
Maria Rodrigues do Desterro ◽  
Sandrine Maria de Arruda ◽  
Luiz Nascimento de Araújo Neto ◽  
Maria do Carmo Alves de Lima ◽  
...  

Background: Considering the need for the development of new antitumor drugs, associated with the great antitumor potential of thiophene and thiosemicarbazonic derivatives, in this work we promote molecular hybridization approach to synthesize new compounds with increased anticancer activity. Objective: Investigate the antitumor activity and their likely mechanisms of action of a series of N-substituted 2-(5-nitro-thiophene)-thiosemicarbazone derivatives. Methods: Methods were performed in vitro (cytotoxicity, cell cycle progression, morphological analysis, mitochondrial membrane potential evaluation and topoisomerase assay), spectroscopic (DNA interaction studies), and in silico studies (docking and molecular modelling). Results: Most of the compounds presented significant inhibitory activity; the NCIH-292 cell line was the most resistant, and the HL-60 cell line was the most sensitive. The most promising compound was LNN-05 with IC50 values ranging from 0.5 to 1.9 µg.mL-1. The in vitro studies revealed that LNN-05 was able to depolarize (dose-dependently) the mitochondrial membrane, induceG1 phase cell cycle arrest noticeably, promote morphological cell changes associated with apoptosis in chronic human myelocytic leukaemia (K-562) cells, and presented no topoisomerase II inhibition. Spectroscopic UV-vis and molecular fluorescence studies showed that LNN compounds interact with ctDNA forming supramolecular complexes. Intercalation between nitrogenous bases was revealed through KI quenching and competitive ethidium bromide assays. Docking and Molecular Dynamics suggested that 5-nitro-thiophene-thiosemicarbazone compounds interact against the larger DNA groove, and corroborating the spectroscopic results, may assume an intercalating interaction mode. Conclusion: Our findings highlight 5-nitro-thiophene-thiosemicarbazone derivatives, especially LNN-05, as a promising new class of compounds for further studies to provide new anticancer therapies.


2021 ◽  
Vol 9 (2) ◽  
pp. 320
Author(s):  
Wilmer Alcazar ◽  
Sami Alakurtti ◽  
Maritza Padrón-Nieves ◽  
Maija Liisa Tuononen ◽  
Noris Rodríguez ◽  
...  

Herein, we evaluated in vitro the anti-leishmanial activity of betulin derivatives in Venezuelan isolates of Leishmania amazonensis, isolated from patients with therapeutic failure. Methods: We analyzed promastigote in vitro susceptibility as well as the cytotoxicity and selectivity of the evaluated compounds. Additionally, the activity of selected compounds was determined in intracellular amastigotes. Finally, to gain hints on their potential mechanism of action, the effect of the most promising compounds on plasma and mitochondrial membrane potential, and nitric oxide and superoxide production by infected macrophages was determined. Results: From the tested 28 compounds, those numbered 18 and 22 were chosen for additional studies. Both 18 and 22 were active (GI50 ≤ 2 µM, cytotoxic CC50 > 45 µM, SI > 20) for the reference strain LTB0016 and for patient isolates. The results suggest that 18 significantly depolarized the plasma membrane potential (p < 0.05) and the mitochondrial membrane potential (p < 0.05) when compared to untreated cells. Although neither 18 nor 22 induced nitric oxide production in infected macrophages, 18 induced superoxide production in infected macrophages. Conclusion: Our results suggest that due to their efficacy and selectivity against intracellular parasites and the potential mechanisms underlying their leishmanicidal effect, the compounds 18 and 22 could be used as tools for designing new chemotherapies against leishmaniasis.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Olfa Chiboub ◽  
Ines Sifaoui ◽  
Manef Abderrabba ◽  
Mondher Mejri ◽  
José J. Fernández ◽  
...  

Abstract Background The in vitro activity of the brown seaweed Dictyota spiralis against both Leishmania amazonensis and Trypanosoma cruzi was evaluated in a previous study. Processing by bio-guided fractionation resulted in the isolation of three active compounds, classified as diterpenes. In the present study, we performed several assays to detect clinical features associated to cell death in L. amazonensis and T. cruzi with the aim to elucidate the mechanism of action of these compounds on parasitic cells. Methods The aims of the experiments were to detect and evaluate specific events involved in apoptosis-like cell death in the kinetoplastid, including DNA condensation, accumulation of reactive oxygen species and changes in ATP concentration, cell permeability and mitochondrial membrane potential, respectively, in treated cells. Results The results demonstrated that the three isolated diterpenes could inhibit the tested parasites by inducing an apoptosis-like cell death. Conclusions These results encourage further investigation on the isolated compounds as potential drug candidates against both L. amazonensis and T. cruzi. Graphic abstract


2021 ◽  
Vol 7 (2) ◽  
pp. 130
Author(s):  
Nathan P. Wiederhold

Invasive infections caused by Candida that are resistant to clinically available antifungals are of increasing concern. Increasing rates of fluconazole resistance in non-albicans Candida species have been documented in multiple countries on several continents. This situation has been further exacerbated over the last several years by Candida auris, as isolates of this emerging pathogen that are often resistant to multiple antifungals. T-2307 is an aromatic diamidine currently in development for the treatment of invasive fungal infections. This agent has been shown to selectively cause the collapse of the mitochondrial membrane potential in yeasts when compared to mammalian cells. In vitro activity has been demonstrated against Candida species, including C. albicans, C. glabrata, and C. auris strains, which are resistant to azole and echinocandin antifungals. Activity has also been reported against Cryptococcus species, and this has translated into in vivo efficacy in experimental models of invasive candidiasis and cryptococcosis. However, little is known regarding the clinical efficacy and safety of this agent, as published data from studies involving humans are not currently available.


Antibiotics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 620
Author(s):  
Anne Ardaillou ◽  
Jérôme Alsarraf ◽  
Jean Legault ◽  
François Simard ◽  
André Pichette

Several families of naturally occurring C-alkylated dihydrochalcones display a broad range of biological activities, including antimicrobial and cytotoxic properties, depending on their alkylation sidechain. The catalytic Friedel–Crafts alkylation of the readily available aglycon moiety of neohesperidin dihydrochalcone was performed using cinnamyl, benzyl, and isoprenyl alcohols. This procedure provided a straightforward access to a series of derivatives that were structurally related to natural balsacones, uvaretin, and erioschalcones, respectively. The antibacterial and cytotoxic potential of these novel analogs was evaluated in vitro and highlighted some relations between the structure and the pharmacological properties of alkylated dihydrochalcones.


Sign in / Sign up

Export Citation Format

Share Document