Expression of T-cell activation markers in CSF of patients with neuroinflammatory diseases and controls

2004 ◽  
Vol 31 (S 1) ◽  
Author(s):  
A Heinrich ◽  
AV Khaw ◽  
N Ahrens
Blood ◽  
2009 ◽  
Vol 114 (3) ◽  
pp. 580-588 ◽  
Author(s):  
Kathrin Gollmer ◽  
François Asperti-Boursin ◽  
Yoshihiko Tanaka ◽  
Klaus Okkenhaug ◽  
Bart Vanhaesebroeck ◽  
...  

Abstract CD4+ T cells use the chemokine receptor CCR7 to home to and migrate within lymphoid tissue, where T-cell activation takes place. Using primary T-cell receptor (TCR)–transgenic (tg) CD4+ T cells, we explored the effect of CCR7 ligands, in particular CCL21, on T-cell activation. We found that the presence of CCL21 during early time points strongly increased in vitro T-cell proliferation after TCR stimulation, correlating with increased expression of early activation markers. CCL21 costimulation resulted in increased Ras- and Rac-GTP formation and enhanced phosphorylation of Akt, MEK, and ERK but not p38 or JNK. Kinase-dead PI3KδD910A/D910A or PI3Kγ-deficient TCR-tg CD4+ T cells showed similar responsiveness to CCL21 costimulation as control CD4+ T cells. Conversely, deficiency in the Rac guanine exchange factor DOCK2 significantly impaired CCL21-mediated costimulation in TCR-tg CD4+ T cells, concomitant with impaired Rac- but not Ras-GTP formation. Using lymph node slices for live monitoring of T-cell behavior and activation, we found that G protein-coupled receptor signaling was required for early CD69 expression but not for Ca2+ signaling. Our data suggest that the presence of CCL21 during early TCR signaling lowers the activation threshold through Ras- and Rac-dependent pathways leading to increased ERK phosphorylation.


2022 ◽  
Vol 12 ◽  
Author(s):  
Niels C. Lory ◽  
Mikolaj Nawrocki ◽  
Martina Corazza ◽  
Joanna Schmid ◽  
Valéa Schumacher ◽  
...  

Antigen recognition by the T-cell receptor induces a cytosolic Ca2+ signal that is crucial for T-cell function. The Ca2+ channel TRPM2 (transient receptor potential cation channel subfamily M member 2) has been shown to facilitate influx of extracellular Ca2+ through the plasma membrane of T cells. Therefore, it was suggested that TRPM2 is involved in T-cell activation and differentiation. However, these results are largely derived from in vitro studies using T-cell lines and non-physiologic means of TRPM2 activation. Thus, the relevance of TRPM2-mediated Ca2+ signaling in T cells remains unclear. Here, we use TRPM2-deficient mice to investigate the function of TRPM2 in T-cell activation and differentiation. In response to TCR stimulation in vitro, Trpm2-/- and WT CD4+ and CD8+ T cells similarly upregulated the early activation markers NUR77, IRF4, and CD69. We also observed regular proliferation of Trpm2-/- CD8+ T cells and unimpaired differentiation of CD4+ T cells into Th1, Th17, and Treg cells under specific polarizing conditions. In vivo, Trpm2-/- and WT CD8+ T cells showed equal specific responses to Listeria monocytogenes after infection of WT and Trpm2-/- mice and after transfer of WT and Trpm2-/- CD8+ T cells into infected recipients. CD4+ T-cell responses were investigated in the model of anti-CD3 mAb-induced intestinal inflammation, which allows analysis of Th1, Th17, Treg, and Tr1-cell differentiation. Here again, we detected similar responses of WT and Trpm2-/- CD4+ T cells. In conclusion, our results argue against a major function of TRPM2 in T-cell activation and differentiation.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Maja-Theresa Dieterlen ◽  
Hartmuth B. Bittner ◽  
Attila Tarnok ◽  
Jens Garbade ◽  
Stefan Dhein ◽  
...  

Background. Cardiopulmonary bypass surgery (CPBS) is associated with an increased risk for infections or with subsequent organ dysfunction. As T cell activation is a central mechanism during inflammatory processes, we developed an assay to evaluate T cell activation pathways in patients undergoing CPBS.Methods. Blood was obtained from eleven patients undergoing CPBS preoperatively, on postoperative day (POD)-3, and on POD-7 and was stimulated with different concentrations of Concanavalin A (ConA). Cyclosporine and sirolimus, inhibiting different pathways of the T cell cycle, were added to blood ex vivo. Expression of T cell activation markers CD25 and CD95 was analyzed by flow cytometry.Results. In untreated blood, expression of CD25 and CD95 significantly increased with higher ConA concentrations(P<0.05)and decreased for all ConA concentrations for both antigens over the study time(P<0.05). Independently from the ConA concentration, inhibition of CD25 and CD95 expression was highest preoperatively for sirolimus and on POD-3 for cyclosporine. At all time points, inhibition of CD25 and CD95 expression was significantly higher after cyclosporine compared to sirolimus treatment(P<0.001).Conclusion. Our results showed that different pathways of T cell activation are impaired after CPBS. Such knowledge may offer the opportunity to identify patients at risk for postoperative complications.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4566-4566
Author(s):  
Matthias Krusch ◽  
Sabine Wintterle ◽  
Lieping Chen ◽  
Lothar Kanz ◽  
Heinz Wiendl ◽  
...  

Abstract Objective: Expression of the B7-homologue B7-H1 (PD1-Ligand) has been proposed to enable tumor cells to evade immune surveillance. Recently, B7-H1 on murine leukemia cells was reported to mediate resistance to cytolytic T-cell destruction. In this study we investigated the expression and functional role of the B7-homologue B7-H1 in human leukemia. Patients and Methods: Leukemia cells from 20 patients and 9 human leukemia cell lines were investigated for B7-H1 expression by flow cytometry. Functional relevance of B7-H1 for tumor-immune interactions was assessed by coculture experiments using purified, alloreactive CD4 and CD8 T-cells in the presence of a neutralizing anti-B7-H1 antibody. Results: Significant B7-H1 expression levels on leukemia cells were detected in 13 of 20 patients and in 8 of 9 cell lines. In contrast to various other tumor entities and the data reported from a murine leukemia system we did not observe any significant inhibitory effect of leukemia-derived B7-H1 on CD4 and CD8 cytokine production (IFN-g, IL-2) or expression of T-cell activation markers (ICOS, CD69). In the presence of a neutralizing B7-H1 antibody (mAb 5H1) no significant changes in T cell IFN-g or IL-2 production were observed. Conclusions: Our data demonstrate that leukemia-derived B7-H1 seems to have no direct influence on T-cell activation and cytokine production in humans. Further experiments are warranted to delineate factors and characterize yet unidentified B7-H1 receptor(s) that determine inhibitory and stimulatory functions of B7-H1 in human leukemia.


Gut ◽  
1998 ◽  
Vol 43 (4) ◽  
pp. 499-505 ◽  
Author(s):  
A Stallmach ◽  
F Schäfer ◽  
S Hoffmann ◽  
S Weber ◽  
I Müller-Molaian ◽  
...  

Background—Immunoregulatory abnormalities of T cells might be of importance in the pathogenesis of pouchitis after ileoanal pouch anastomosis (IAP).Aims—To characterise T cell subsets, their state of activation, and production of cytokines in inflamed and non-inflamed pouches in patients with ulcerative colitis (UC) and familial adenomatous polyposis (FAP). The influence of T cell activation on mucosal transformation was also studied.Patients—Mucosal biopsy specimens were taken from 42 patients with IAP (33 with UC and nine with FAP).Methods—Mononuclear cells were isolated by standard techniques and characterised by three colour flow cytometry. Interferon γ (IFN-γ) production was studied using the ELISPOT technique.Results—In patients with UC with pouchitis there was a significant increase in the CD4:CD8 ratio, expression of activation markers on CD3+ cells, and number of IFNγ producing mononuclear cells compared with patients with UC without pouchitis (CD4:CD8 ratio 1.3 (range 0.7–2.7) versus 0.6 (0.1–1.0), p=0.012). In addition, a positive correlation between increased crypt depth and the number of CD4+ cells (r=0.57) was shown.Conclusion—The observed increase in activated mucosal CD4+ T cells and IFN-γ production might lead to mucosal destruction and crypt hyperplasia as seen in pouchitis.


2011 ◽  
Vol 18 (3) ◽  
pp. 393-405 ◽  
Author(s):  
J. R. Stabel ◽  
S. Robbe-Austerman

ABSTRACTThe objective of this study was to observe early markers of cell-mediated immunity in naïve calves infected withMycobacterium aviumsubsp.paratuberculosisand how expression of these markers evolved over the 12-month period of infection. Groups for experimental infection included control (noninfected), oral (infected orally withM. aviumsubsp.paratuberculosisstrain K-10), oral/DXM (pretreatment with dexamethasone before oral inoculation), intraperitoneal (i.p.) inoculation, and oral/M (oral inoculation with mucosal scrapings from a cow with clinical disease) groups. One of the earliest markers to emerge was antigen-specific gamma interferon (IFN-γ). Only i.p. inoculated calves had detectable antigen-specific IFN-γ responses at 7 days, with responses of the other infection groups becoming detectable at 90 and 120 days. All infection groups maintained robust IFN-γ responses for the remainder of the study. At 1 month, calves in the oral and oral/M groups had higher antigen-stimulated interleukin-10 (IL-10) levels than calves in the other treatment groups, but IL-10 secretion declined by 12 months for all calves. T-cell activation markers such as CD25, CD26, CD45RO, and CD5 were significantly upregulated in infected calves compared to noninfected controls. Oral inoculation of calves resulted in significantly increased antigen-specific lymphocyte proliferation at 9 and 12 months, as well as inducible nitric oxide synthase (iNOS) secretion at 6 and 12 months. These results demonstrate that infection of naïve calves withM. aviumsubsp.paratuberculosisinvoked early immunologic responses characterized by robust antigen-specific IFN-γ responses and induction of CD25 and CD45RO expression on T-cell subsets. These were followed by antigen-specific lymphocyte proliferation, iNOS secretion, and expression of CD26 and CD5brightmarkers in the latter part of the 12-month study.


Author(s):  
Jacob K Files ◽  
Sushma Boppana ◽  
Mildred D Perez ◽  
Sanghita Sarkar ◽  
Kelsey E Lowman ◽  
...  

SARS-CoV-2 causes a wide spectrum of clinical manifestations and significant mortality. Studies investigating underlying immune characteristics are needed to understand disease pathogenesis and inform vaccine design. In this study, we examined immune cell subsets in hospitalized and non-hospitalized individuals. In hospitalized patients, many adaptive and innate immune cells were decreased in frequency compared to healthy and convalescent individuals, with the exception of B lymphocytes which increased. Our findings show increased frequencies of T-cell activation markers (CD69, Ox40, HLA-DR and CD154) in hospitalized patients, with other T-cell activation/exhaustion markers (CD25, PD-L1 and TIGIT) remaining elevated in hospitalized and non-hospitalized individuals. B cells had a similar pattern of activation/exhaustion, with increased frequency of CD69 and CD95 during hospitalization, followed by an increase in PD1 frequencies in non-hospitalized individuals. Interestingly, many of these changes were found to increase over time in non-hospitalized longitudinal samples, suggesting a prolonged period of immune dysregulation following SARS-CoV-2 infection. Changes in T-cell activation/exhaustion in non-hospitalized patients were found to positively correlate with age. Severely infected individuals had increased expression of activation and exhaustion markers. These data suggest a prolonged period of immune dysregulation following SARS-CoV-2 infection highlighting the need for additional studies investigating immune dysregulation in convalescent individuals.


Sign in / Sign up

Export Citation Format

Share Document