Discussion of “Two-Step Mixing Process Elaboration of the Hot-Mix Asphalt Mixture Based on Surface Energy Theory” by Liping Liu, Mingchen Li, and Qingbing Lu

2021 ◽  
Vol 33 (12) ◽  
pp. 07021016
Author(s):  
Pinyu Ji ◽  
Bingye Han ◽  
Baoshan Huang
2013 ◽  
Vol 723 ◽  
pp. 459-465 ◽  
Author(s):  
Tian Qing Ling ◽  
Yuan Yuan Wang ◽  
Chao Hui Shi

As for the existing surface energy adhesion theories which are used to evaluate asphalt and stone's adhesive performance quantitatively, they are either dealing with the interface between solid asphalt and solid stone which can not adhere according to the formulas and definitions in process of adhesion or else roughly characterizing the solid asphalt and stone's adhesion properties with the adhesion index of heated asphalt and solid stone. So according to the forming process of asphalt mixture , this paper puts forward the method and principle to evaluate asphalt and stone's adhesion based on the surface energy theory. It evaluates the adhesion properties of asphalt and stone under hydrous and anhydrous conditions respectively. In the anhydrous condition, we choose contact angle and the Gibbs free energy of failure stage as the indexes of evaluating asphalt - stone interface's adhesion properties, while the materials under the hydrous condition, we select cohesional work, contact angle, Gibbs free energy as the indexes of evaluating asphalt-stone system's resistance of moisture.


2021 ◽  
Vol 13 (6) ◽  
pp. 3005
Author(s):  
Jiangang Yang ◽  
Chen Sun ◽  
Wenjie Tao ◽  
Jie Gao ◽  
Bocheng Huang ◽  
...  

In this study, the compaction characteristics of recycled hot-mix asphalt (RHMA) were evaluated using the void content (VV), compaction energy index (CEI), slope of accumulated compaction energy (K), and lock point (LP). Then, the effects of the compaction parameters, including the gradation of the RHMA, reclaimed asphalt pavement (RAP) content, temperature of gyrations, and number of gyrations, on the compaction characteristics of RHMA were investigated. An orthogonal experiment was designed and the data collected were analyzed via range analysis; then, a regression model was generated relying on a quadratic polynomial. Furthermore, the regression model was used for the comparison and prediction of the mixture’s compactability during the material design. Finally, the compaction mechanism of RHMA was discussed from the perspective of the void content of RAP particles. The results showed that a finer aggregate gradation, a higher gyration temperature, a greater number of gyrations, and a higher RAP content were effective for increasing the compactability of RHMA. The range analysis results suggest that the gradation of RHMA has the greatest influence on compactability, followed by the RAP content. The RAP aggregate cannot diffuse to a new mixture completely, so the remained RAP particle reduces the void content of RHMA. Therefore, a higher RAP content up to 50% can help RHMA to achieve the designed void content with higher efficiency.


2012 ◽  
Vol 39 (7) ◽  
pp. 824-833 ◽  
Author(s):  
Sangyum Lee ◽  
Cheolmin Baek ◽  
Je-Jin Park

This paper presents the performance evaluation of unmodified and lime-modified hot mix asphalt (HMA) mixtures at varying asphalt content using asphalt mixture performance test developed from National Cooperative Highway Research Program project 9-19 and 9-29 and the viscoelastic continuum damage finite element analysis. Test methods adopted in this study are the dynamic modulus test for stiffness, the triaxial repeated load permanent deformation test for rutting, and the direct tension test for fatigue cracking. The findings from this study support conventional understanding of the effects of asphalt content and lime modification on the fatigue cracking and rutting performance. Finally, the optimum asphalt content for both lime-modified and unmodified mixtures are proposed based on the knowledge gleaned from the performance-based mix design methodology. With additional validation and calibration, the comprehensive methodology described in this paper may serve as the foundation for a performance-based HMA mix design and performance-related HMA specifications.


2014 ◽  
Vol 3 (1) ◽  
pp. 35-42
Author(s):  
Carmen Răcănel ◽  
Adrian Burlacu

Abstract The benefits of WMA technologies include reduced fuel usage and emissions in support of sustainable development, improved field compaction, which can facilitate longer haul distances and cool weather pavement, and better working conditions. Since this is a relatively new technology, it is necessary to determine the behavior and the performances of this type of asphalt mixture depending on additive percent. These technologies tend to reduce the viscosity of the asphalt and provide for the complete coating of aggregates at lower temperatures. WMA is produced at temperatures 20 to 30°C lower than typical hot-mix asphalt (HMA). The paper presents the results obtained in the Road Laboratory of Technical University of Civil Engineering Bucharest on an asphalt mixture with fibers (MASF16) prepared according to the “warm mix” technology with chemical additive. Different percent of additive are used in laboratory to draw up the “master curves” of asphalt mixture obtained by 4PB-PR stiffness modulus results.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2528 ◽  
Author(s):  
Yueqin Hou ◽  
Xiaoping Ji ◽  
Jia Li ◽  
Xianghang Li

To study and evaluate the adhesion between recycled concrete aggregate and asphalt, the contact angles (CAs) between droplet (water and ethanol) and recycled concrete aggregate (RCA), natural aggregates, and solid bitumen (matrix asphalt, SBS modified asphalt) were tested via the sessile drop method with an optical microscope. The surface free energy was then calculated. The CAs between hot asphalt and RCA and natural aggregates were tested via the hanging slice method. The adhesive energy between asphalt and RCA and natural aggregates were calculated based on the test results of the surface free energy and CAs. Then, the influence of RCA on the water stability and fatigue performance of the asphalt mixture was analyzed by testing the water stability and fatigue properties of hot mix asphalts containing RCA (HMA-RCA) with different aggregates and RCA dosages. The surface energy of the various aggregates and the CAs between aggregates and asphalts were sorted as follows: Granite > RCA > serpentinite > limestone. The surface energy and CA of RCA were very close to that of serpentinite. The adhesive energy between various aggregates and asphalt were sorted as follows: Limestone > serpentinite > RCA > granite. The adhesive energy between RCA and asphalt was also very close to that of serpentinite. The residual Marshall stability, tensile strength ratio, and fatigue performance of the HMA-RCAs were gradually reduced along with the increasing RCA dosage. This effect may be attributed to the fact that the adhesive energy between the RCA and the asphalt was less than that of water and that the asphalt was easily stripped from the RCA surface. Excessive RCA content in the aggregate can lead to excessive porosity of the HMA-RCA. The CAs and adhesive energy between RCA and asphalt showed significant effects on the water stability and fatigue performance of HMA-RCA.


Sign in / Sign up

Export Citation Format

Share Document