Buckling Load and Post-Buckling Behavior of Tapered Column with Constant Volume, Regular Polygon Cross-Section and Both Clamped Ends

Author(s):  
Sang Jin Oh ◽  
Byoung Koo Lee ◽  
Kwang Kyou Park ◽  
Kou Moon Choi
1964 ◽  
Vol 8 (04) ◽  
pp. 7-21
Author(s):  
H.G. Schultz

In the paper presented the behavior of a transversely formed box-girder model subjected to pure bending is discussed, where the deck plating of the model is loaded above the buckling load. The experimental results obtained are in reasonable agreement with theoretical investigations and show the influence of fabrication initiated plate deflections on the buckling and postbuckling behavior of the deck plating clearly. A method is suggested for determining the buckling load of plates having large initial deformations.


1995 ◽  
Vol 62 (2) ◽  
pp. 338-345 ◽  
Author(s):  
Lei Fu ◽  
A. M. Waas

The initial post-buckling behavior of thick rings under external uniform hydrostatic pressure is investigated. In the analysis, no assumptions are placed upon the relative magnitudes of the elongations and rotations, and the ring is assumed to be elastic and extensional. The importance of including certain nonlinear terms in the initial post-buckling stability analysis and the effects of nonzero shearing strains on the buckling load and the initial post-buckling stability are examined. It is shown that the classical Kirchhoff assumptions, when employed for a ring lead to nonvanishing through thickness strains, εzz and εzθ, with the latter being proportional to the through thickness coordinate z. An approximate first order shear deformation analysis and a two-dimensional elasticity analysis (without beam-type kinematical assumptions) of the initial post-buckling behavior of thick rings are presented and the thickness effects on the buckling load and the initial post-buckling behavior are examined. The formulation for the composite ring was reduced to that of an isotropic ring and the results thus obtained were compared with published one-dimensional results in the literature. It is found from both the shear deformation and the two-dimensional analysis that the initial post-buckling behavior of the isotropic ring and the composite rings studied are stable. The influence of thickness on the degree of stability in the immediate post-buckling response is characterized.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3539 ◽  
Author(s):  
Aamer Nazir ◽  
Ahmad Bin Arshad ◽  
Jeng-Ywan Jeng

Lattice structures are known for their high strength-to-weight ratio, multiple functionalities, lightweight, stiffness, and energy absorption capabilities and potential applications in aerospace, automobile, and biomedical industry. To reveal the buckling (global and local) and post-buckling behavior of different lattice morphologies, both experimental and simulation-based studies were carried out. Additionally, a variable-density lattice structure was designed and analyzed to achieve the optimal value of critical buckling load. Latticed columns were fabricated using polyamide 12 material on multi jet fusion 3D printer. The results exhibited that the buckling in lattice columns depends on the distribution of mass, second moment of inertia I, diameter and position of vertical beams, number of horizontal or inclined beams, and location and angle of the beams that support the vertical beams. The number of horizontal and inclined beams and their thickness has an inverse relation with buckling; however, this trend changes after approaching a critical point. It is revealed that vertical beams are more crucial for buckling case, when compared with horizontal or inclined beams; however, material distribution in inclined or horizontal orientation is also critical because they provide support to vertical beams to behave as a single body to bear the buckling load. The results also revealed that the critical buckling load could be increased by designing variable density cellular columns in which the beams at the outer edges of the column are thicker compared with inner beams. However, post-buckling behavior of variable density structures is brittle and local when compared with uniform density lattice structures.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110259
Author(s):  
Yinqi Li ◽  
Feng Liu ◽  
Wenming Cheng

The buckling behavior of latticed columns had been widely investigated based on the theory of Euler, Engesser and Timoshenko shear beam. Although these methods had been formulated and proved to be accurate in case of special assumptions, the influences of lacing bars on the buckling behavior of latticed columns were unclear. This paper modeled a general four-legged latticed column to study the influence of the cross-section characteristics of lacing bars along with their imperfections on the buckling capacity of latticed columns. Three loading conditions and four geometric imperfect models were built to testify the performance of lacing bars. To calculate the buckling load of latticed columns with imperfections accurately, advanced nonlinear analytical procedures using Newton-Raphson incremental-iterative method (ANAP-NR) and Risk arc-length incremental-iterative method (ANAP-Risk) were developed, and then validated by FE software ABAQUS. The current data in the paper show the maximum variation on the critical buckling load of latticed columns, caused by the cross-section area, the bending moment of inertia outer lacing plane, and the imperfections of lacing bars, could reach 68%, 30%, and 25%. The analytical results indicate the great importance of lacing bars on the buckling capacity of latticed columns.


2015 ◽  
Vol 37 (4) ◽  
pp. 251-262
Author(s):  
Dao Van Dung ◽  
Nguyen Thi Nga

Based on the first-order shear deformation plate theory (FSDT), the smeared stiffeners technique and Galerkin method, the analytical expressions to determine the static critical buckling load and analyze the post-buckling load-deflection curves of FGM plates reinforced by FGM stiffeners resting on elastic foundations and subjected to in-plane compressive loads or thermal loads are established in part 1. In this part, we will use them to study the effects of temperature, stiffener, volume fraction index, geometrical parameters, elastic foundations on the buckling and post-buckling behavior of plates. In addition, the results in comparisons between the classical plate theory (CPT) and the first order shear deformation theory (FSDT) also are carried out and shown that the buckling and post-buckling behavior of more thick plate should be studied by FSDT.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 319
Author(s):  
Joon Kyu Lee ◽  
Byoung Koo Lee

This paper deals with the transverse free vibration of axially functionally graded (AFG) cantilever columns under the influence of axial compressive load. The columns possessing a regular polygon in their cross-section are tapered and their material properties vary along the axis of the column. An emphasis is placed on the columns with constant volume for admissible geometries and materials. The governing differential equation of the problem is derived and solved using the direct integral approach in conjunction with the determinant search technique. The obtained results are in good agreement with those in the available literature and computed by finite element analysis. Numerical examples for the natural frequency and mode shape of the columns are presented to investigate the effects of parameters related to geometrical nonuniformity and material inhomogeneity.


2016 ◽  
Vol 52 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Amlan Paul ◽  
Debabrata Das

In the present work, the non-linear post-buckling load–deflection behavior of tapered functionally graded material beam is studied for different in-plane thermal loadings. Two different thermal loadings are considered. The first one is due to the uniform temperature rise and the second one is due to the steady-state heat conduction across the beam thickness leading to non-uniform temperature rise. The governing equations are derived using the principle of minimum total potential energy employing Timoshenko beam theory. The solution is obtained by approximating the displacement fields following Ritz method. Geometric non-linearity for large post-buckling behavior is considered using von Kármán type non-linear strain-displacement relationship. Stainless steel/silicon nitride functionally graded material beam is considered with temperature-dependent material properties. The validation of the present work is successfully performed using finite element software ANSYS and using the available result in the literature. The post-buckling load–deflection behavior in non-dimensional plane is presented for different taperness parameters and also for different volume fraction indices. Normalized transverse deflection fields are presented showing the shift of the point of maximum deflection for various deflection levels. The results are new of its kind and establish benchmark for studying non-linear thermo-mechanical behavior of tapered functionally graded material beam.


1990 ◽  
Vol 112 (3) ◽  
pp. 336-340 ◽  
Author(s):  
Fu-Kuo Chang ◽  
Zafer Kutlu

An analytical investigation was performed to study the effect of delamination on the response of cylindrical composite shells subjected to external loadings. It was of particular interest to determine the buckling load and the post-buckling behavior of externally pressurized cylindrical composite shells containing delaminations. An analytical model was developed that consists of a structural analysis for calculating the global deformations of the structures and a fracture analysis for determining the delamination growth in the structures. A nonlinear finite element code based on the updated Lagrangian formulation was developed for the model. Based on the results of calculations, it was found that delamination can significantly affect the buckling load and response of cylindrical composite shells subjected to externally pressurized loadings, depending upon the initial length and location of the delamination, ply orientation and laminate curvature. The calculated strain energy release rate at the crack tips indicates that delamination growth occurs in the wake of buckling due to Mode II shear fracture.


2012 ◽  
Vol 12 (06) ◽  
pp. 1250044 ◽  
Author(s):  
BYOUNG KOO LEE ◽  
TAE EUN LEE ◽  
JONG MIN CHOI ◽  
SANG JIN OH

This paper deals with dynamic optimal arches, built with a constant volume of arch material, that have the largest fundamental natural frequencies. The cross-section of each arch is a solid regular polygon with its depth varying in a functional fashion. Three shapes of arch (circular, parabolic, and sinusoidal) and three kinds of taper type (linear, parabolic, and sinusoidal) are considered. Differential equations governing free vibrations of such tapered arches are derived, in which the effect of rotatory inertia is included; these equations are numerically solved to calculate the natural frequencies. The numerical results are presented in tables and figures that relate the frequency curves to arch parameters. Typical examples of obtaining the geometry of the dynamic optimal arch are presented. Laboratory scale experiments were conducted to measure the natural frequencies.


Sign in / Sign up

Export Citation Format

Share Document