Enterococci Populations in Conventional, Manufactured, and LID Stormwater Treatment Systems

Author(s):  
Stephen H. Jones ◽  
Robert Roseen ◽  
Robert A. Wildey ◽  
Julie Maimes ◽  
James Houle ◽  
...  
Keyword(s):  
2002 ◽  
Vol 46 (6-7) ◽  
pp. 151-158 ◽  
Author(s):  
L. Dallmer

This paper describes part of a program undertaken by South Sydney City Council to promote sustainable water management The aim of the project, named SQIRTS (Stormwater Quality Improvement & Reuse Treatment Scheme) was to demonstrate best-practice water management approaches, to learn from the process of implementing these, and to encourage the further use of these technologies. It comprises three main components located in a suburban park: a gross pollutant trap (GPT), a stormwater reuse system, and interpretative artworks that aim to educate and interpret the water processes within the park. Results from the pre-construction monitoring program are presented.


2021 ◽  
Vol 13 (15) ◽  
pp. 8552
Author(s):  
Vahid Alimohammadi ◽  
Mehdi Maghfouri ◽  
Delaram Nourmohammadi ◽  
Pejman Azarsa ◽  
Rishi Gupta ◽  
...  

Clean water is a vital need for all living creatures during their lifespan. However, contaminated stormwater is a major issue around the globe. A wide range of contaminants, including heavy metals, organic and inorganic impurities, has been discovered in stormwater. Some commonly utilized methods, such as biological, physical and chemical procedures, have been considered to overcome these issues. However, these current approaches result in moderate to low contaminant removal efficiencies for certain classes of contaminants. Of late, filtration and adsorption processes have become more featured in permeable concretes (PCs) for the treatment of stormwater. As nanoparticles have vast potential and unique characterizations, such as a higher surface area to cure polluted stormwater, employing them to improve permeable concretes’ capabilities in stormwater treatment systems is an effective way to increase filtration and adsorption mechanisms. The present study reviews the removal rate of different stormwater contaminants such as heavy metals, organic and other pollutants using nanoparticle-improved PC. The application of different kinds of nanomaterials in PC as porous media to investigate their influences on the properties of PC, including the permeability rate, compressive strength, adsorption capacity and mix design of such concrete, was also studied. The findings of this review show that different types of nanomaterials improve the removal efficiency, compressive strength and adsorption capacity and decrease the infiltration rate of PC during the stormwater treatment process. With regard to the lack of comprehensive investigation concerning the use of nanomaterials in PC to treat polluted stormwater runoff, this study reviews 242 published articles on the removal rate of different stormwater contaminants by using PC improved with nanoparticles.


Urban Science ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Hadi Zamanifard ◽  
Edward A. Morgan ◽  
Wade L. Hadwen

Modern stormwater treatment assets are a form of water sensitive urban design (WSUD) features that aim to reduce the volumes of sediment, nutrients and gross pollutants discharged into receiving waterways. Local governments and developers in urban areas are installing and maintaining a large number of stormwater treatment assets, with the aim of improving urban runoff water quality. Many of these assets take up significant urban space and are highly visible and as a result, community acceptance is essential for effective WSUD design and implementation. However, community perceptions and knowledge about these assets have not been widely studied. This study used a survey to investigate community perceptions and knowledge about stormwater treatment assets in Brisbane, Australia. The results suggest that there is limited community knowledge of these assets, but that communities notice them and value their natural features when well-maintained. This study suggests that local governments may be able to better inform residents about the importance of these assets, and that designing for multiple purposes may improve community acceptance and support for the use of Council funds to maintain them.


2021 ◽  
Vol 13 (3) ◽  
pp. 1443
Author(s):  
Fawaz Alharbi ◽  
Meshal Almoshaogeh ◽  
Md. Shafiquzzaman ◽  
Husnain Haider ◽  
Md. Rafiquzzaman ◽  
...  

Permeable pavement provides sustainable solutions for urban stormwater management. In this research, the potential of rice bran mixed porous clay bricks were evaluated for permeable pavements. Physical, mechanical and hydrological properties along with stormwater treatment capabilities of the brick samples were assessed. The study found that ratio of rice bran and clay soil has significant impacts on the properties of the produced bricks. Water adsorption and porosity increased with increasing rice bran ratio. Compressive strength of brick samples decreased from 29.6 MPa to 6.9 MPa when the ratio of rice bran was increased from 0% to 20%. The permeability coefficient increased from 4 × 10−4 to 1.39 × 10−2 mm/s with the increase in rice bran from 0% to 30%. The preamble clay bricks were efficient to remove turbidity, total suspended solids (TSS), five days’ biochemical oxygen demand (BOD5), and heavy metals (Mn, Cu, and Zn) from stormwater to meet the World Health Organization (WHO) standard for wastewater reuse application. The bricks with ≤10% of rice bran achieved the American Society for Testing and Materials (ASTM) standard of the desire compressive strength and permeability coefficient for pedestrian and light traffic pavements. The porous bricks prepared in this study can be used to construct permeable pavements and would be a sustainable low impact developments technique for stormwater management in urban areas.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 283
Author(s):  
Yike Meng ◽  
Yuan Wang ◽  
Chuanyue Wang

Bioretention systems are frequently employed in stormwater treatment to reduce phosphorus pollution and prevent eutrophication. To enhance their efficiency, filter additives are required but the currently used traditional materials cannot meet the primary requirements of excellent hydraulic properties as well as outstanding release and adsorption capacities at the same time. In this research, a polyurethane-biochar crosslinked material was produced by mixing the hardwood biochar (HB) with polyurethane to improve the performance of traditional filter additives. Through basic parameter tests, the saturated water content of polyurethane-biochar crosslinked material (PCB) was doubled and the permeability coefficient of PCB increased by two orders of magnitude. Due to the polyurethane, the leaching speed of phosphorus slowed down in the batching experiments and fewer metal cations leached. Moreover, PCB could adsorb 93–206 mg/kg PO43− at a typical PO43− concentration in stormwater runoff, 1.32–1.58 times more than HB, during isothermal adsorption experiments. In the simulating column experiments, weaker hydropower reduced the PO43− leaching quantities of PCB and had a stable removal rate of 93.84% in phosphate treatment. This study demonstrates the potential use of PCB as a filter additive in a bioretention system to achieve hydraulic goals and improve phosphate adsorption capacities.


Sign in / Sign up

Export Citation Format

Share Document