Correlation of electrical‐resistivity anomalies and crystal structure in copper‐germanium thin‐film alloys

1993 ◽  
Vol 63 (12) ◽  
pp. 1622-1624 ◽  
Author(s):  
M. O. Aboelfotoh ◽  
H. M. Tawancy ◽  
L. Krusin‐Elbaum
1991 ◽  
Vol 238 ◽  
Author(s):  
M. Tan ◽  
E. Haftek ◽  
A. Waknis ◽  
J. A. Barnard

ABSTRACTThe electrical resistivity and crystal structure of three Ni-based periodic multilayer thin film systems (Al/Ni, Ti/Ni, and Cu/Ni) have been investigated. In each series of films the Ni layer thickness was systematically varied while the thickness of the ‘spacer’ layer (Al, Ti, or Cu) was fixed. In the Al/Ni and Ti/Ni systems films with very thin Ni layers (and consequently large volume fractions of spacer and ‘interfacial’ material) yielded very high resistivities which dropped rapidly with increasing Ni thickness. By contrast, the resistivity of Cu/Ni multilayers continuously increased with Ni layer thickness due to the decline in volume fraction of high conductivity Cu. Both the Al/Ni and Ti/Ni systems exhibit Ni(111) texture in the thicker Ni layer samples. As the Ni layer thickness decreases the Ni(111) peak loses intensity and broadens due to finer grain size and increasing disorder. Al-Ni and Ti-Ni compounds are also noted. In the Cu/Ni system, however, the sharpness of the Ni(111) peak passes through a minimum as the Ni layer thickness decreases but then increases for the thinnest Ni layer samples.


Author(s):  
Frastica Deswardani ◽  
Helga Dwi Fahyuan ◽  
Rimawanto Gultom ◽  
Eif Sparzinanda

Telah dilakukan penelitian mengenai pengaruh konsentrasi doping karbon pada lapisan tipis TiO2 yang ditumbuhkan dengan metode spray terhadap struktur kristal dan morfologi TiO2. Hasil karakterisasi SEM menunjukkan bahwa penambahan doping karbon dapat meningkatkan ukuran butir. Lapisan TiO2 doping karbon 8% diperoleh ukuran butir terbesar adalah 1.35 μm, sedangkan ukuran tekecilnya adalah 0.45 μm. Sementara itu, untuk lapisan tipis TiO2 didoping karbon 15% memiliki ukuran butir terbesar yaitu 1.76 μm dan terkecil 0.9 μm. Hasil XRD menunjukkan seluruh puncak difraksi lapisan tipis TiO2 dengan doping karbon 8% dan 15% merupakan TiO2 anatase. Ukuran kristal lapisan TiO2 didoping karbon 8% diperoleh sebesar 638,08 Å dan untuk pendopingan 15% karbon ukuran kristal lapisan tipis TiO2 adalah 638,09 Å, hal ini menunjukkan ukuran kristal kedua sampel tidak mengalami perubahan yang signifikan.   TiO2 thin film with carbon doping has been successfully grown by spray method. The research on the effect of carbon doping on crystal structure and morfology of TiO2 has been prepared by varying carbon concentration (8% and 15% carbon). Analysis of SEM showed that the addition of carbon may increase the grain size. Thin film of TiO2 doped carbon 8% has the largest grain size 1.35 μm, while the smallest grain size is 0.45 μm. Meanwhile, for thin film TiO2 doped carbon 15% has the largest grain size 1.76 μm and smallest 0.9 μm. The XRD results showed the entire diffraction peak of thin film TiO2 doped carbon 8% and 15% were TiO2 anatase. The crystal size of thin film TiO2 doped carbon 8% was obtained at 638.08 Å and for thin film TiO2 doped carbon 15% the crystalline size of TiO2 thin film was 638.09 Å, this shows that the crystal size of both samples did not change significantly.    


2021 ◽  
Vol 103 (3) ◽  
Author(s):  
Silvie Maskova-Cerna ◽  
Alexandre Kolomiets ◽  
Jiri Prchal ◽  
Itzhak Halevy ◽  
Volodymyr Buturlim ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Lars Banko ◽  
Phillip M. Maffettone ◽  
Dennis Naujoks ◽  
Daniel Olds ◽  
Alfred Ludwig

AbstractWe apply variational autoencoders (VAE) to X-ray diffraction (XRD) data analysis on both simulated and experimental thin-film data. We show that crystal structure representations learned by a VAE reveal latent information, such as the structural similarity of textured diffraction patterns. While other artificial intelligence (AI) agents are effective at classifying XRD data into known phases, a similarly conditioned VAE is uniquely effective at knowing what it doesn’t know: it can rapidly identify data outside the distribution it was trained on, such as novel phases and mixtures. These capabilities demonstrate that a VAE is a valuable AI agent for aiding materials discovery and understanding XRD measurements both ‘on-the-fly’ and during post hoc analysis.


2021 ◽  
Vol 47 (11) ◽  
pp. 16029-16036
Author(s):  
Masato Uehara ◽  
Yuki Amano ◽  
Sri Ayu Anggraini ◽  
Kenji Hirata ◽  
Hiroshi Yamada ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aziz Ahmed ◽  
Seungwoo Han

AbstractN-type bismuth telluride (Bi2Te3) thin films were prepared on an aluminum nitride (AlN)-coated stainless steel foil substrate to obtain optimal thermoelectric performance. The thermal co-evaporation method was adopted so that we could vary the thin film composition, enabling us to investigate the relationship between the film composition, microstructure, crystal preferred orientation and thermoelectric properties. The influence of the substrate temperature was also investigated by synthesizing two sets of thin film samples; in one set the substrate was kept at room temperature (RT) while in the other set the substrate was maintained at a high temperature, of 300 °C, during deposition. The samples deposited at RT were amorphous in the as-deposited state and therefore were annealed at 280 °C to promote crystallization and phase development. The electrical resistivity and Seebeck coefficient were measured and the results were interpreted. Both the transport properties and crystal structure were observed to be strongly affected by non-stoichiometry and the choice of substrate temperature. We observed columnar microstructures with hexagonal grains and a multi-oriented crystal structure for the thin films deposited at high substrate temperatures, whereas highly (00 l) textured thin films with columns consisting of in-plane layers were fabricated from the stoichiometric annealed thin film samples originally synthesized at RT. Special emphasis was placed on examining the nature of tellurium (Te) atom based structural defects and their influence on thin film properties. We report maximum power factor (PF) of 1.35 mW/m K2 for near-stoichiometric film deposited at high substrate temperature, which was the highest among all studied cases.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Gennady V. Shilov ◽  
Elena I. Zhilyaeva ◽  
Sergey M. Aldoshin ◽  
Alexandra M Flakina ◽  
Rustem B. Lyubovskii ◽  
...  

Electrical resistivity measurements of a dual layered organic conductor (ET)4ZnBr4(1,2-C6H4Cl2) above room temperature show abrupt changes in resistivity at 320 K. Single-crystal X-ray diffraction studies in the 100-350 K range...


Sign in / Sign up

Export Citation Format

Share Document