Cleaning of carbon contaminated vacuum ultraviolet‐optics: Influence on surface roughness and reflectivity

1992 ◽  
Vol 63 (1) ◽  
pp. 1428-1431 ◽  
Author(s):  
B. R. Müller ◽  
J. Feldhaus ◽  
F. Schäfers ◽  
F. Eggenstein
2005 ◽  
Vol 30 (11) ◽  
pp. 1336 ◽  
Author(s):  
P. E. Dyer ◽  
C. D. Walton ◽  
K. A. Akeel

1971 ◽  
Vol 41 ◽  
pp. 316-316
Author(s):  
B. Feuerbacher ◽  
B. Fitton

The reflectance of aluminium films has been determined with films free of contaminating layers (Feuerbacher and Steinmann, 1969.) It has been shown that the reflectance of smooth aluminium films is 91% at the Lyα line. The influence of the surface plasmon excitation has also been investigated. This shows up as a dip in the reflectance if the film is not perfectly smooth. It imposes stringent requirements on the polishing of mirror substrates if optimum reflectance is required in the 1200–1700 Å region, since the influence of the surface plasmon is caused by surface roughness of lateral dimensions less than 1000 Å.


2021 ◽  
Vol 08 ◽  
Author(s):  
Timothy Kovach ◽  
Samuel Boyd ◽  
Anthony Garcia ◽  
Andrew Fleischer ◽  
Katerine Vega ◽  
...  

Background: Polybenzimidazole (PBI) is used in high temperature proton exchange membrane fuel cells (HT-PEMFCs) and redox flow batteries, where proton transfer occurs with the nitrogen-containing groups in PBI, and in aerospace applications exposed to oxygen and radiation. Objective: The objective is to investigate VUV photo-oxidation of PBI for the first time in order to incorporate polar functional groups on the surface to potentially enhance proton conductivity in HT-PEMFCs. Methods: A low-pressure microwave discharge of Ar generated 104.8 and 106.7 nm vacuum UV (VUV) radiation to treat PBI with VUV photo-oxidation. Analysis was done with X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), water contact angle (WCA) and Thermal Gravimetric Analysis (TGA) to detect changes in chemistry, surface roughness, hydrophilicity, and adhesion, respectively. Results : XPS showed: an increase in the O concentration up to a saturation level of 15 ± 1 at %; a decrease of the C concentration by about the same amount; and little change in the N concentration. With increasing treatment time, there were significant decreases in the concentrations of C-C sp2, C-C sp3 and C=N groups, and increases in the concentration of C=O, O-C=O, O-(C=O)-O, C-N, and N-C=O containing moieties. The water contact angle decreased from 83° for pristine PBI down to 43°, making the surface more hydrophilic, primarily due to the oxidation, since AFM detected no significant changes in surface roughness. TGA analysis showed an improvement of water adhesion to the treated surface. Conclusion: Microwave generated VUV photo-oxidation is an effective technique for oxidizing the surface of PBI and increasing hydrophilicity.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 411
Author(s):  
Nana Takahashi ◽  
Hiroyuki Kuwae ◽  
Seren Maeda ◽  
Masahiro Kawamura ◽  
Ami Tezuka ◽  
...  

This study uses vacuum ultraviolet (VUV) light with a wavelength of 172 nm as a surface treatment to enhance the adsorption capacity of wood-based activated carbon (AC). The AC surface treatment is performed under three O2 partial pressure conditions—5.0 × 104 Pa, where ozone (O3) effects dominate; 6.3 × 10−6 Pa, where VUV effects dominate; and 1.9 × 103 Pa for a balanced condition. For the O3-dominant condition, only graphene edge defects are etched (no aromatic carbon bonds are etched), resulting in increased surface roughness. When the VUV effects dominate, aromatic carbon bonds are cleaved, which then reacted with O2 or water adsorbed inside the pores. This increased both the number and size of the mesopores. Under the balanced conditions, the water adsorption capacity was enhanced by 45.5%, which is higher than that obtained before VUV exposure or with VUV under other conditions. This is because the surface roughness increased, as well as the pore sizes and numbers under the balanced condition. These results indicate that we can control VUV-based AC surface treatments via O2 partial pressure.


1988 ◽  
Vol 102 ◽  
pp. 353-356
Author(s):  
C. Goldbach ◽  
G. Nollez

AbstractThe principles and the realization of an experiment devoted to oscillator strength measurements in the vacuum-ultraviolet by the emission method are briefly presented. The results obtained for the strong multiplets of neutral nitrogen and carbon in the 1200-2000 Å range yield an absolute scale of oscillator strengths in good agreement with the most recent calculations.


Author(s):  
I. H. Musselman ◽  
R.-T. Chen ◽  
P. E. Russell

Scanning tunneling microscopy (STM) has been used to characterize the surface roughness of nonlinear optical (NLO) polymers. A review of STM of polymer surfaces is included in this volume. The NLO polymers are instrumental in the development of electrooptical waveguide devices, the most fundamental of which is the modulator. The most common modulator design is the Mach Zehnder interferometer, in which the input light is split into two legs and then recombined into a common output within the two dimensional waveguide. A π phase retardation, resulting in total light extinction at the output of the interferometer, can be achieved by changing the refractive index of one leg with respect to the other using the electrooptic effect. For best device performance, it is essential that the NLO polymer exhibit minimal surface roughness in order to reduce light scattering. Scanning tunneling microscopy, with its high lateral and vertical resolution, is capable of quantifying the NLO polymer surface roughness induced by processing. Results are presented below in which STM was used to measure the surface roughness of films produced by spin-coating NLO-active polymers onto silicon substrates.


Author(s):  
H. Kinney ◽  
M.L. Occelli ◽  
S.A.C. Gould

For this study we have used a contact mode atomic force microscope (AFM) to study to topography of fluidized cracking catalysts (FCC), before and after contamination with 5% vanadium. We selected the AFM because of its ability to well characterize the surface roughness of materials down to the atomic level. It is believed that the cracking in the FCCs occurs mainly on the catalysts top 10-15 μm suggesting that the surface corrugation could play a key role in the FCCs microactivity properties. To test this hypothesis, we chose vanadium as a contaminate because this metal is capable of irreversibly destroying the FCC crystallinity as well as it microporous structure. In addition, we wanted to examine the extent to which steaming affects the vanadium contaminated FCC. Using the AFM, we measured the surface roughness of FCCs, before and after contamination and after steaming.We obtained our FCC (GRZ-1) from Davison. The FCC is generated so that it contains and estimated 35% rare earth exchaged zeolite Y, 50% kaolin and 15% binder.


Sign in / Sign up

Export Citation Format

Share Document