Novel hybrid interferometer stabilization scheme used in wavelength shift measurement for Bragg grating sensors

1998 ◽  
Vol 69 (5) ◽  
pp. 1961-1965 ◽  
Author(s):  
W. J. Shi ◽  
Y. N. Ning ◽  
K. T. V. Grattan ◽  
A. W. Palmer
2018 ◽  
Vol 28 (2) ◽  
pp. 139
Author(s):  
Pham Van Hoi ◽  
Nguyen Thuy Van ◽  
Pham Van Dai ◽  
Le Huu Thang ◽  
Nguyen Van An ◽  
...  

The photonic sensors have shown very effectively for measuring the toxic contents in the liquid and air environments. In principle, the photonic sensors based on measurement of wavelength shift between reference condition and testing environments that we need use the spectrometer with high cost. In this paper, we present new configurations of photonic devices for measuring wavelength shift without use of spectrometer, which has a large potential for application in sensing technique with low cost. There are two configurations of photonic sensors are presented: i) first of them is based on fiber Bragg grating (FBG) combined with DFB laser diode with controlling wavelength emission by laser temperature and ii) second one is used  the fiber ring laser from Erbium-doped fiber and two FBG operated as  reference and sensing probe. The etched-fiber Bragg grating (e-FBG) as sensing probe is suitable for bio- and/ or chemical sensors. A novel photonic sensor can increase sensitivity and measuring accuracy of device by the narrow line-width of reflection spectra from laser and the sensor can determine a refractive index variation of 2x10-4, which is similarly for high resolution spectrometer. The experimental results show that this sensing method could determine different mixing ratios of organic solvents in liquid environment with good repeatability, high accuracy and rapid response.Keywords:


2014 ◽  
Vol 43 (6) ◽  
pp. 606004
Author(s):  
李智忠 LI Zhizhong ◽  
许忠良 XU Zhongliang ◽  
李海涛 LI Haitao ◽  
程玉胜 CHENG Yusheng ◽  
史秋亮 SHI Qiuliang

2014 ◽  
Vol 68 (3) ◽  
Author(s):  
Siti Musliha Aishah Musa ◽  
RK Raja Ibrahim ◽  
Asrul Izam Azmi

This paper presents early work on Fiber Bragg grating (FBG) as temperature sensor to monitor temperature variation inside a packed-bed non-thermal plasma reactor. FBG made from germania-doped fiber with center Bragg wavelength of 1552.5 nm was embedded inside non-thermal plasma reactor with sphere shape dielectric bead (barium titanate) and used to probe the temperature variation inside the reactor. The experimental works have proven that FBG is a suitable sensor to monitor temperature variation inside of reactor via LabVIEW program. Besides that, Optical Spectrum Analyzer (OSA) recorded Bragg wavelength shift as voltage of power supply increases, which indicate the non-uniform temperature variation occurring inside the reactor. However, it does not affect the chemical reaction inside the reactor because the temperature condition is in steady state.


2016 ◽  
Vol 78 (3) ◽  
Author(s):  
Suzairi Daud ◽  
Muhammad Safwan Abd Aziz ◽  
Kashif Tufail Chaudhary ◽  
Mahdi Bahadoran ◽  
Jalil Ali

A practical pass-through type fibre Bragg grating (FBG) temperature sensor system have been designed, developed, simulated, and experimentally investigated. The performance of FBG was evaluated in harsh environments exposed under direct sunlight, rain, and wind. The sensor system designed directly focused with convex and hand lens. The temperature of FBG’s sensor head been measured. The broadband laser source was launched into the system using tunable laser source (TLS) and both transmission and reflection spectra of FBG sensor were measured by optical spectrum analyzer (OSA). Results shows that the Bragg wavelength shift,  increased proportionally with the temperature changes. The sensitivity of FBG were recorded at 0.0100 and 0.0132 nm °C-1 for the systems where convex and hand lens applied to the FBG’s sensor head respectively, while the sensitivity of 0.0118 nm °C-1 measured for the system without any focusing element applied.


2022 ◽  
Vol 12 (2) ◽  
pp. 886
Author(s):  
Hun-Kook Choi ◽  
Young-Jun Jung ◽  
Bong-Ahn Yu ◽  
Jae-Hee Sung ◽  
Ik-Bu Sohn ◽  
...  

This paper demonstrates the fabrication of radiation-resistant fiber Bragg grating (FBG) sensors using infrared femtosecond laser irradiation. FBG sensors were written inside acrylate-coated fluorine-doped single-mode specialty optical fibers. We detected the Bragg resonance at 1542 nm. By controlling the irradiation conditions, we improved the signal strength coming out from the FBG sensors. A significant reduction in the Bragg wavelength shift was detected in the fabricated FBG sensors for a radiation dose up to 105 gray, indicating excellent radiation resistance capabilities. We also characterized the temperature sensitivity of the radiation-resistant FBG sensors and detected outstanding performance.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5221 ◽  
Author(s):  
Chongxi Wang ◽  
Zhanhua Huang ◽  
Guifang Li ◽  
Shan Zhang ◽  
Jian Zhao ◽  
...  

Simultaneous measurement of temperature and strain was demonstrated using a polarization-maintaining few-mode Bragg grating (PM-FMF-FBG) based on the wavelength and phase modulation of the even L P 11 mode. The wavelength shift sensitivity and the interrogated phase sensitivity of the temperature and strain were measured to be 10 pm·°C−1 and 0.73 pm·με−1 and −3.2 × 10−2 rad·°C−1 and 4 × 10−4 rad·με−1, respectively, with a discrimination efficiency of 98%. The polarization interference led to selective polarization excitation of the reflection spectra, and the calculated phase sensitivity agreed with the experimental results.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5469
Author(s):  
Xiuxiu Xu ◽  
Mingming Luo ◽  
Jianfei Liu ◽  
Nannan Luan

We propose and demonstrate a temperature and humidity sensor based on a fluorinated polyimide film and fiber Bragg grating. Moisture-induced film expansion or contraction causes an extra strain, which is transferred to the fiber Bragg grating and leads to a humidity-dependent wavelength shift. The hydrophobic fluoride doping in the polyimide film helps to restrain its humidity hysteresis and provides a short moisture breathing time less than 2 min. Additionally, another cascaded fiber Bragg grating is used to exclude its thermal crosstalk, with a temperature accuracy of ±0.5 °C. Experimental monitoring over 9000 min revealed a considerable humidity accuracy better than ±3% relative humidity, due to the sensitized separate film-grating structure. The passive and electromagnetic immune sensor proved itself in field tests and could have sensing applications in the electro-sensitive storage of fuel, explosives, and chemicals.


Optics ◽  
2020 ◽  
Vol 1 (2) ◽  
pp. 202-212 ◽  
Author(s):  
Yang Ran ◽  
Peng Xiao ◽  
Yongkang Zhang ◽  
Deming Hu ◽  
Zhiyuan Xu ◽  
...  

Operando and precisely probing aqueous pH is fundamentally demanded, both in chemical and biological areas. Conventional pH probes, subjected to the larger size, are probably unfit for application in some extreme scenarios, such as a trace amount of samples. In this paper, we have further developed the pH sensor that leverages the microfiber Bragg grating with an ultra-compact size down to an order of magnitude of 10−14 m3. Using the electrostatic self-assembly layer-by-layer technique, the functional film consisting of sodium alginate, which harnesses a pH-dependent hygroscopicity, is immobilized on the fiber surface. Consequently, the alteration of aqueous pH could be quantitatively indicated by the wavelength shift of the grating resonance via the refractive index variation of the sensing film due to the water absorption or expulsion. The grating reflections involving fundamental mode and higher order mode exhibit the sensitivities of −72 pm/pH and −265 pm/pH, respectively. In addition, temperature compensation can be facilitated by the recording of the two reflections simultaneously. Furthermore, the modeling and simulation results predict the pivotal parameters of the configuration in sensitivity enhancement. The proposed proof-of-concept enriches the toolbox of pH sensor for catering to the need of detection in some extremely small spaces—for example, the living cells or the bio-tissues.


Sign in / Sign up

Export Citation Format

Share Document