scholarly journals Depth-profiling plasma-induced densification of porous low-k thin films using positronium annihilation lifetime spectroscopy

2002 ◽  
Vol 81 (8) ◽  
pp. 1447-1449 ◽  
Author(s):  
Jia-Ning Sun ◽  
David W. Gidley ◽  
Yifan Hu ◽  
William E. Frieze ◽  
E. Todd Ryan
2003 ◽  
Vol 766 ◽  
Author(s):  
Jingyu Hyeon-Lee ◽  
Jihoon Rhee ◽  
Jungbae Kim ◽  
Jin-Heong Yim ◽  
Seok Chang

AbstractLow dielectric fluoro-containing poly(silsesquioxanes) (PSSQs) have been synthesized using trifluoropropyl trimethoxysilane (TFPTMS), methyl trimethoxysilane (MTMS), and 2, 4, 6, 8-tetramethyl-2, 4, 6, 8-tetra(trimethoxysilylethyl) cyclotetrasiloxane. The properties of fluorocontaining PSSQs based thin films were studied by electrical, mechanical, and structural characterization. Film was spun on a silicon substrate, baked at 150°C and 250°C for 1 minute, respectively, and cured in the furnace at 420°C for 1 hour under vacuum condition. Thermally decomposable trifluoropropyl groups of the fluoro-containing PSSQ were served as a pore generator and partially contributed to lower a dielectric constant. â-cyclodextrin (CD) was also employed as a pore generator. The concentration of the pore generator in the film was varied from 0 to 30 %. The dielectric constants of the porous PSSQ films were found to be in the range of 2.7 – 1.9 (at 100 kHz). Hardness and Young's modulus of the films were measured by nano-indentation. The elastic modulus and hardness of the porous films were well correlated with the concentration of the pore generators. Positronium Annihilation Lifetime Spectroscopy (PALS) was employed to characterize a pore size of the porous fluoro-containing PSSQ film. The pore size of the film was less than 2.2 nm. The nanoporous films showed quite promising properties for commercial application.


2005 ◽  
Vol 86 (12) ◽  
pp. 121904 ◽  
Author(s):  
Hua-Gen Peng ◽  
William E. Frieze ◽  
Richard S. Vallery ◽  
David W. Gidley ◽  
Darren L. Moore ◽  
...  

2002 ◽  
Vol 726 ◽  
Author(s):  
J.N. Sun ◽  
D. W. Gidley ◽  
Y.F. Hu ◽  
W.E. Frieze ◽  
S. Yang

AbstractDepth profiled positronium annihilation lifetime spectroscopy (PALS) has been used to probe the pore characteristics (size, distribution, and interconnectivity) in thin, porous films, including silica, organic and hybrid films. PALS has good sensitivity to and resolution of all pores (both interconnected and closed) in the size range from 0.3 nm to 30 nm, even in films buried under a diffusion barrier. In this technique a focussed beam of several keV positrons forms positronium (Ps, the electron-positron bound state) with a depth distribution that depends on the selected positron beam energy. Ps inherently localizes in the pores where its natural (vacuum) annihilation lifetime of 142 ns is reduced by collisions with the pore surfaces. The collisionally reduced Ps lifetime is correlated with pore size and is the key feature in transforming a Ps lifetime distribution into a pore size distribution. In hybrid films made porous by a degradable porogen PALS readily detects a percolation threshold with increasing porosity that represents the transition from closed pores to interconnected pores. PALS is a non-destructive, depth profiling technique with the only requirement that positrons can be implanted into the porous film where Ps can form.


2004 ◽  
Vol 445-446 ◽  
pp. 334-336 ◽  
Author(s):  
Toshiyuki Ohdaira ◽  
Ryoichi Suzuki ◽  
Hironobu Shirataki ◽  
Shin-Ya Matsuno

2005 ◽  
Vol 863 ◽  
Author(s):  
Richard S. Vallery ◽  
Hua-Gen Peng ◽  
William E. Frieze ◽  
David W. Gidley ◽  
Darren L. Moore ◽  
...  

AbstractPositronium annihilation lifetime spectroscopy (PALS) using a positron beam is a proven technique to characterize porosity in amorphous thin film materials. The capability to control the depth of the implanted positrons is unique to beams as compared to traditional bulk PALS techniques. By increasing the positron beam energy, positrons are implanted deeper into the film. Control of the positron implantation depth in beam-PALS allows analysis of sub- micron films, investigation of depth-dependent film inhomogeneities, determination of pore interconnection lengths, and access to buried films under barrier layers. Details on PALS depth profiling and an example of applying the technique to a plasma-enhanced-chemical-vapor- deposited (PECVD) porous film are presented.


2018 ◽  
Author(s):  
K. A. Rubin ◽  
W. Jolley ◽  
Y. Yang

Abstract Scanning Microwave Impedance Microscopy (sMIM) can be used to characterize dielectric thin films and to quantitatively discern film thickness differences. FEM modeling of the sMIM response provides understanding of how to connect the measured sMIM signals to the underlying properties of the dielectric film and its substrate. Modeling shows that sMIM can be used to characterize a range of dielectric film thicknesses spanning both low-k and medium-k dielectric constants. A model system consisting of SiO2 thin films of various thickness on silicon substrates is used to illustrate the technique experimentally.


Author(s):  
Amal Ben Hadj Mabrouk ◽  
Christophe Licitra ◽  
Antoine Chateauminois ◽  
Marc Veillerot

2013 ◽  
Vol 9 (6) ◽  
pp. 723-728 ◽  
Author(s):  
Bhavana N. Joshi ◽  
A. M. Mahajan
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document