Time Constants for Vacuum Gage Systems

1949 ◽  
Vol 20 (9) ◽  
pp. 860-863 ◽  
Author(s):  
S. A. Schaaf ◽  
R. R. Cyr
Keyword(s):  
Author(s):  
W. C. Bigelow ◽  
F. B. Drogosz ◽  
S. Nitschke

High vacuum systems with oil diffusion pumps usually have a pressure switch to protect against Insufficient cooling water; however, If left unattended for long periods of time, failure of the mechanical fore pump can occur with equally serious results. The device shown schematically in Fig. 1 has been found to give effective protection against both these failures, yet it is inexpensive and relatively simple to build and operate.With this system, pressure in the fore pump line is measured by thermocouple vacuum gage TVG (CVC G.TC-004) whose output is monitored by meter relay MRy (Weston 1092 Sensitrol) which is set to close if the pressure rises above about 0.2 torr. This energizes control relay CRy (Potter & Brumfield KA5Y 120VAC SPDT) cutting off power to solenoid-operated fore line valve Vf (Cenco 94280-4 Norm. Closed) which closes to prevent further leakage of air into the diffusion pump


Author(s):  
Tugrul Irmak ◽  
Ksander N. de Winkel ◽  
Daan M. Pool ◽  
Heinrich H. Bülthoff ◽  
Riender Happee

AbstractPrevious literature suggests a relationship between individual characteristics of motion perception and the peak frequency of motion sickness sensitivity. Here, we used well-established paradigms to relate motion perception and motion sickness on an individual level. We recruited 23 participants to complete a two-part experiment. In the first part, we determined individual velocity storage time constants from perceived rotation in response to Earth Vertical Axis Rotation (EVAR) and subjective vertical time constants from perceived tilt in response to centrifugation. The cross-over frequency for resolution of the gravito-inertial ambiguity was derived from our data using the Multi Sensory Observer Model (MSOM). In the second part of the experiment, we determined individual motion sickness frequency responses. Participants were exposed to 30-minute sinusoidal fore-aft motions at frequencies of 0.15, 0.2, 0.3, 0.4 and 0.5 Hz, with a peak amplitude of 2 m/s2 in five separate sessions, approximately 1 week apart. Sickness responses were recorded using both the MIsery SCale (MISC) with 30 s intervals, and the Motion Sickness Assessment Questionnaire (MSAQ) at the end of the motion exposure. The average velocity storage and subjective vertical time constants were 17.2 s (STD = 6.8 s) and 9.2 s (STD = 7.17 s). The average cross-over frequency was 0.21 Hz (STD = 0.10 Hz). At the group level, there was no significant effect of frequency on motion sickness. However, considerable individual variability was observed in frequency sensitivities, with some participants being particularly sensitive to the lowest frequencies, whereas others were most sensitive to intermediate or higher frequencies. The frequency of peak sensitivity did not correlate with the velocity storage time constant (r = 0.32, p = 0.26) or the subjective vertical time constant (r = − 0.37, p = 0.29). Our prediction of a significant correlation between cross-over frequency and frequency sensitivity was not confirmed (r = 0.26, p = 0.44). However, we did observe a strong positive correlation between the subjective vertical time constant and general motion sickness sensitivity (r = 0.74, p = 0.0006). We conclude that frequency sensitivity is best considered a property unique to the individual. This has important consequences for existing models of motion sickness, which were fitted to group averaged sensitivities. The correlation between the subjective vertical time constant and motion sickness sensitivity supports the importance of verticality perception during exposure to translational sickness stimuli.


2021 ◽  
Vol 22 (9) ◽  
pp. 4663
Author(s):  
Aleksandra Orzechowska ◽  
Martin Trtílek ◽  
Krzysztof Michał Tokarz ◽  
Renata Szymańska ◽  
Ewa Niewiadomska ◽  
...  

A non-destructive thermal imaging method was used to study the stomatal response of salt-treated Arabidopsis thaliana plants to excessive light. The plants were exposed to different levels of salt concentrations (0, 75, 150, and 220 mM NaCl). Time-dependent thermograms showed the changes in the temperature distribution over the lamina and provided new insights into the acute light-induced temporary response of Arabidopsis under short-term salinity. The initial response of plants, which was associated with stomatal aperture, revealed an exponential growth in temperature kinetics. Using a single-exponential function, we estimated the time constants of thermal courses of plants exposed to acute high light. The saline-induced impairment in stomatal movement caused the reduced stomatal conductance and transpiration rate. Limited transpiration of NaCl-treated plants resulted in an increased rosette temperature and decreased thermal time constants as compared to the controls. The net CO2 assimilation rate decreased for plants exposed to 220 mM NaCl; in the case of 75 mM NaCl treatment, an increase was observed. A significant decline in the maximal quantum yield of photosystem II under excessive light was noticeable for the control and NaCl-treated plants. This study provides evidence that thermal imaging as a highly sensitive technique may be useful for analyzing the stomatal aperture and movement under dynamic environmental conditions.


Author(s):  
Maximilian Theiß ◽  
Merten Grupe ◽  
Tilman Lamparter ◽  
Maria Andrea Mroginski ◽  
Rolf Diller

AbstractDeactivation processes of photoexcited (λex = 580 nm) phycocyanobilin (PCB) in methanol were investigated by means of UV/Vis and mid-IR femtosecond (fs) transient absorption (TA) as well as static fluorescence spectroscopy, supported by density-functional-theory calculations of three relevant ground state conformers, PCBA, PCBB and PCBC, their relative electronic state energies and normal mode vibrational analysis. UV/Vis fs-TA reveals time constants of 2.0, 18 and 67 ps, describing decay of PCBB*, of PCBA* and thermal re-equilibration of PCBA, PCBB and PCBC, respectively, in line with the model by Dietzek et al. (Chem Phys Lett 515:163, 2011) and predecessors. Significant substantiation and extension of this model is achieved first via mid-IR fs-TA, i.e. identification of molecular structures and their dynamics, with time constants of 2.6, 21 and 40 ps, respectively. Second, transient IR continuum absorption (CA) is observed in the region above 1755 cm−1 (CA1) and between 1550 and 1450 cm−1 (CA2), indicative for the IR absorption of highly polarizable protons in hydrogen bonding networks (X–H…Y). This allows to characterize chromophore protonation/deprotonation processes, associated with the electronic and structural dynamics, on a molecular level. The PCB photocycle is suggested to be closed via a long living (> 1 ns), PCBC-like (i.e. deprotonated), fluorescent species.


Batteries ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Erik Goldammer ◽  
Julia Kowal

The distribution of relaxation times (DRT) analysis of impedance spectra is a proven method to determine the number of occurring polarization processes in lithium-ion batteries (LIBs), their polarization contributions and characteristic time constants. Direct measurement of a spectrum by means of electrochemical impedance spectroscopy (EIS), however, suffers from a high expenditure of time for low-frequency impedances and a lack of general availability in most online applications. In this study, a method is presented to derive the DRT by evaluating the relaxation voltage after a current pulse. The method was experimentally validated using both EIS and the proposed pulse evaluation to determine the DRT of automotive pouch-cells and an aging study was carried out. The DRT derived from time domain data provided improved resolution of processes with large time constants and therefore enabled changes in low-frequency impedance and the correlated degradation mechanisms to be identified. One of the polarization contributions identified could be determined as an indicator for the potential risk of plating. The novel, general approach for batteries was tested with a sampling rate of 10 Hz and only requires relaxation periods. Therefore, the method is applicable in battery management systems and contributes to improving the reliability and safety of LIBs.


2011 ◽  
Vol 38 (2) ◽  
pp. 294-299 ◽  
Author(s):  
Martijn Miedema ◽  
Frans H. de Jongh ◽  
Inez Frerichs ◽  
Mariëtte B. van Veenendaal ◽  
Anton H. van Kaam

Sign in / Sign up

Export Citation Format

Share Document