Plasma and Ion Beam Characteristics of the Dynamag Ion Source

1962 ◽  
Vol 33 (12) ◽  
pp. 1338-1339 ◽  
Author(s):  
Edwin M. Kellogg ◽  
Karl E. Eklund

2009 ◽  
Vol 26 (8) ◽  
pp. 082901 ◽  
Author(s):  
Zou Gui-Qing ◽  
Lei Guang-Jiu ◽  
Jiang Shao-Feng ◽  
Cao Jian-Yong ◽  
Yu Li-Ming ◽  
...  


2015 ◽  
Vol 7 (12) ◽  
pp. 945-949
Author(s):  
Boo Ki Min ◽  
Ju Sung Kim ◽  
Seung Ju Lim ◽  
Hyun OH Joo ◽  
Sang Jung Ahn ◽  
...  


2018 ◽  
Vol 96 (2) ◽  
pp. 194-201
Author(s):  
S. Abdel Samed ◽  
S.I. Radwan ◽  
H. El-Khabeary

An axial direct-current conical anode – disc cathode ion source has been designed, constructed, and operated. The electrical discharge and the output ion beam characteristics are measured using nitrogen gas. It is found that at the optimum dimensions, pressure equal to 4.5 × 10−5 mm Hg and discharge current equal to 250 μA, a maximum output ion beam current equal to 91 μA can be obtained. A comparison between the experimental results and theoretical calculations of the output ion beam current values at the optimum dimensions and operating parameters for different discharge current of conical anode and disc cathode ion source using nitrogen gas is determined. It is found that a good agreement exists between the experimental results and theoretical calculations.



2013 ◽  
Vol 1575 ◽  
Author(s):  
Mitsuaki Takeuchi ◽  
Takuya Hamaguchi ◽  
Hiromichi Ryuto ◽  
Gikan H Takaoka

ABSTRACTIonic liquid (IL) ion sources with different emitter tip materials and tip numbers were developed and examined on ion beam characteristics with respect to its ILs wettability. As a result of ion current measurements, the most stable emission current was obtained for the graphite emitter tip and the ion current increased with increase of the tip number. The results indicate that the emitter wettability corresponding to the supplying flow rate and the number of emission site play an important role to stabilize and increase the beam current.



Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.



Author(s):  
Valery Ray ◽  
Josef V. Oboňa ◽  
Sharang Sharang ◽  
Lolita Rotkina ◽  
Eddie Chang ◽  
...  

Abstract Despite commercial availability of a number of gas-enhanced chemical etches for faster removal of the material, there is still lack of understanding about how to take into account ion implantation and the structural damage by the primary ion beam during focused ion beam gas-assisted etching (FIB GAE). This paper describes the attempt to apply simplified beam reconstruction technique to characterize FIB GAE within single beam width and to evaluate the parameters critical for editing features with the dimensions close to the effective ion beam diameter. The approach is based on reverse-simulation methodology of ion beam current profile reconstruction. Enhancement of silicon dioxide etching with xenon difluoride precursor in xenon FIB with inductively coupled plasma ion source appears to be high and relatively uniform over the cross-section of the xenon beam, making xenon FIB potentially suitable platform for selective removal of materials in circuit edit application.



2020 ◽  
Vol 91 (11) ◽  
pp. 113302
Author(s):  
H. Kaminaga ◽  
T. Takimoto ◽  
A. Tonegawa ◽  
K. N. Sato


1984 ◽  
Vol 27 (8) ◽  
pp. 745-751
Author(s):  
N. I. Danilovich
Keyword(s):  
Ion Beam ◽  


2017 ◽  
Vol 743 ◽  
pp. 112-117
Author(s):  
Alexander Zolkin ◽  
Anna Semerikova ◽  
Sergey Chepkasov ◽  
Maksim Khomyakov

In the present study, the Raman spectra of diamond-like amorphous (a-C) and hydrogenated amorphous (a-C:H) carbon films on silicon obtained using the ion-beam methods and the pulse cathodic arc deposition technique were investigated with the aim of elucidating the relation between the hardness and structure of the films. The hardness of the samples used in the present study was 19 – 45 GPa. Hydrogenated carbon films were synthesized using END–Hall ion sources and a linear anode layer ion source (LIS) on single-crystal silicon substrates. The gas precursors were CH4 and C3H8, and the rate of the gas flow fed into the ion source was 4.4 to 10 sccm. The ion energies ranged from 150 to 600 eV. a-C films were deposited onto Si substrates using the pulse cathodic arc deposition technique. The films obtained by the pulse arc technique contained elements with an ordered structure. In the films synthesized using low- (150 eV) and high-energy (600 eV) ions beams, an amorphous phase was the major phase. The significant blurriness of the diffraction rings in the electron diffraction patterns due to a large film thickness (180 – 250 nm) did not allow distinctly observing the signals from the elements with an ordered structure against the background of an amorphous phase.



Sign in / Sign up

Export Citation Format

Share Document