Development of high-current ionic liquid ion source toward surface modification

2013 ◽  
Vol 1575 ◽  
Author(s):  
Mitsuaki Takeuchi ◽  
Takuya Hamaguchi ◽  
Hiromichi Ryuto ◽  
Gikan H Takaoka

ABSTRACTIonic liquid (IL) ion sources with different emitter tip materials and tip numbers were developed and examined on ion beam characteristics with respect to its ILs wettability. As a result of ion current measurements, the most stable emission current was obtained for the graphite emitter tip and the ion current increased with increase of the tip number. The results indicate that the emitter wettability corresponding to the supplying flow rate and the number of emission site play an important role to stabilize and increase the beam current.

1995 ◽  
Vol 396 ◽  
Author(s):  
Igor V. Svadkovsk ◽  
Anatoly P. Dostanko

AbstractTwo types of the ion sources for ion beam assisted deposition using inert gases, oxygen or nitrogen are reported. Their design and operational features are presented. Each of them has the properties of two existing main types of the gridless Hall sources: an end-Hall source and the anode-layer version a closed-drift ion source. Basic distinction of the developed sources is the extended range of ion energies in high-current beam for optimization of deposition, cleaning and etching processes.


2018 ◽  
Vol 96 (2) ◽  
pp. 194-201
Author(s):  
S. Abdel Samed ◽  
S.I. Radwan ◽  
H. El-Khabeary

An axial direct-current conical anode – disc cathode ion source has been designed, constructed, and operated. The electrical discharge and the output ion beam characteristics are measured using nitrogen gas. It is found that at the optimum dimensions, pressure equal to 4.5 × 10−5 mm Hg and discharge current equal to 250 μA, a maximum output ion beam current equal to 91 μA can be obtained. A comparison between the experimental results and theoretical calculations of the output ion beam current values at the optimum dimensions and operating parameters for different discharge current of conical anode and disc cathode ion source using nitrogen gas is determined. It is found that a good agreement exists between the experimental results and theoretical calculations.


Author(s):  
Wenbin Huang ◽  
Juan Yang ◽  
Haibo Meng ◽  
Xu Xia ◽  
Yuliang Fu ◽  
...  

To increase the ion current from the ion source is an important way to improve the performance of the electron cyclotron resonance ion thruster(ECRIT). The ion migration distance, magnetic topology and propellant have a close influence on the extracting ion beam. This influence is studied through both magnetic circuit structure calculation and experiments, by using an ion source with different gate mounting positions and magnet lengths. Experimental results show that the distribution of the ECR region will be discontinuous when the length of the magnet is too short. This will greatly reduce the performance of the ion source. To increase the length of the magnet is beneficial to the beam emission at high gas flow rate, but it reduces the beam emission at low gas flow rate. The effect of the ion migration distance on the ion beam is related to the plasma density in the ion source. When the gas flow rate is low, a longer gate mounting ring is beneficial to increase the ion current. When the gas flow rate is high, the different magnetic topology will cause the gate mounting ring which influences on the ion current. At low gas flow conditions, xenon gas can significantly improve the discharge stability of the ion source and increase the ion current. However, at high gas flow rate, the concentration effect of the neutral particles is too strong that affects the energy accumulation process of the free electrons. This would cause the decrease in the ion current.


Author(s):  
Sheng Hui Fu ◽  
Li Cheng Tian ◽  
Zhen- Feng Ding

Abstract Thus far, effects of secondary γ-electrons emitted from accelerator grids of gridded ion sources on ionization in discharge chambers have not been studied. The presence and induced processes of such secondary electrons in a microwave electron cyclotron resonance gridded ion source are confirmed by the consistent explanations of: (1) the observed jump of ion beam current (Ib) in case of a low-density plasma appearing at the chamber’s radial center due to the microwave skin effect; (2) the evolution of glow images recorded from the end-view of the ion source during the jump of Ib; (3) the over-large jump step of Ib with the increasing microwave power; (4) the pattern appearing on the temperature sticker exposed to the discharge operated in the regime where the arrayed energetic-electron beamlets are injected into the discharge chamber; (5) the measured step-increment in the voltage drop across the screen grid sheath. A positive feedback loop composed of involved processes are established to elucidate the underlying mechanism. Energetic γ-electrons from the accelerator grid and warm δ-electrons from the opposite antenna do not produce direct excitation and ionization, but they enhance the electrical confinement of cold electrons by elevating the voltage drop across the sheaths at the antenna and screen grid, thus leading to the jump of Ib. The energetic γ-electrons-based model can be also modified to explain abnormal results observed in the other gridded ion sources. Energetic γ-electrons from accelerator grids should be taken into account in understanding gridded ion sources.


2009 ◽  
Vol 26 (8) ◽  
pp. 082901 ◽  
Author(s):  
Zou Gui-Qing ◽  
Lei Guang-Jiu ◽  
Jiang Shao-Feng ◽  
Cao Jian-Yong ◽  
Yu Li-Ming ◽  
...  

In s.i.m.s. the sample surface is ion bombarded and the emitted secondary ions are mass analysed. When used in the static mode with very low primary ion beam current densities (10 -11 A/mm 2 ), the technique analyses the outermost atomic layers with the following advantages (Benninghoven 1973, I975): the structural—chemical nature of the surface may be deduced from the masses of the ejected ionized clusters of atoms; detection of hydrogen and its compounds is possible; sensitivity is extremely high (10 -6 monolayer) for a number of elements. Composition profiles are obtained by increasing the primary beam current density (dynamic mode) or by combining the technique in the static mode with ion beam machining with a separate, more powerful ion source. The application of static s.i.m.s. in metallurgy has been explored by analysing a variety of alloy surfaces after fabrication procedures in relation to surface quality and subsequent performance. In a copper—silver eutectic alloy braze it was found that the composition of the solid surface depended markedly on its pretreatment. Generally there was a surface enrichment of copper relative to silver in melting processes while sawing and polishing enriched the surface in silver


2014 ◽  
Vol 488-489 ◽  
pp. 48-52
Author(s):  
Zhi Qiang Fu ◽  
Yi Ren ◽  
Cheng Biao Wang ◽  
Wen Yue ◽  
Song Sheng Lin

The influence of sputtering power, N2 flow rate, ion current and substrate temperature on the monolayer TiN films deposited by ion beam assisted magnetron sputtering and the effect of the on-off ratio and deposition period on the multilayered Ti/TiN films was studied. It was found that the key factors affecting surface defects of monolayer TiN films are sputtering power and N2 flow rate while ion current is the most significant factor affecting the hardness of monolayer TiN films. The surface defects can be greatly inhibited by pulsed gas feeding. The adhesion and hardness of the multilayered Ti/TiN films is improved with increasing on-off ratio or decreasing deposition period; the on-off ratio has a negligible effect on the surface defects of the multilayered Ti/TiN films while the surface defects of the multilayered Ti/TiN films become more obvious at a long deposition period.


2021 ◽  
Author(s):  
Ana Carracedo Plumed ◽  
Derek Fabel ◽  
Richard Shanks

<p>With the present AMS <sup>10</sup>Be uncertainties (~2% best case scenario) and the increasing need for more precise cosmogenic <sup>10</sup>Be data it has become imperative to improve AMS measurements. Precision depends on counting statistics which in turn depend on ion beam current stability and sample longevity. The ion beam currents are dependent on the metal matrix in which BeO is dispersed; the matrix:BeO ratio; homogeneity of the mixture and the packing of the AMS cathode. We aim to understand the effect of cathode homogeneity in generating stable beam currents. We have performed a series of experiments using different metal matrices (Nb, Ag, Fe) in different forms (solid and in solution). The metals have been added to different stages of the sample precipitation process and both BeO and Be(OH)<sub>2</sub> have been pressed into AMS cathodes and analysed at SUERC. We will discuss results of these experiments and introduce an innovative use of polyoxometalates (molibdanate and niobate) to create a homogeneous compound that has the potential to generate stable ion beam currents from sputter ion sources.</p>


Radiocarbon ◽  
1997 ◽  
Vol 40 (1) ◽  
pp. 247-253 ◽  
Author(s):  
Karl F. Von Reden ◽  
Ann P. McNichol ◽  
Ann Pearson ◽  
Robert J. Schneider

The NOSAMS facility at Woods Hole Oceanographic Institution has started to develop and apply techniques for measuring very small samples on a standard Tandetron accelerator mass spectrometry (AMS) system with high-current hemispherical Cs sputter ion sources. Over the past year, results on samples ranging from 7 to 160 μg C showed both the feasibility of such analyses and the present limitations on reducing the size of solid carbon samples. One of the main factors affecting the AMS results is the dependence of a number of the beam optics parameters on the extracted ion beam current. The extracted currents range from 0.5 to 10 μA of 12C− for the sample sizes given above. We here discuss the setup of the AMS system and methods for reliable small-sample measurements and give the AMS-related limits to sample size and the measurement uncertainties.


Sign in / Sign up

Export Citation Format

Share Document