scholarly journals Apparatus to measure high-temperature thermal conductivity and thermoelectric power of small specimens

2005 ◽  
Vol 76 (9) ◽  
pp. 094901 ◽  
Author(s):  
T. Dasgupta ◽  
A. M. Umarji
2003 ◽  
Vol 793 ◽  
Author(s):  
J.B. Posthill ◽  
J.C. Caylor ◽  
P.D. Crocco ◽  
T.S. Colpitts ◽  
R. Venkatasubramanian

ABSTRACTPbTe-based thin films were deposited by thermal evaporation at temperatures ranging from ambient temperature to 430°C on different vicinal GaAs (100) substrates and BaF2 (111). This materials system is being evaluated as a potential candidate thermoelectric material for a mid-temperature stage in a cascade power generation module. Pure PbTe, PbSe, and multilayer PbTe/PbSe films were investigated. All films deposited on different vicinal GaAs (100) substrates were found to be polycrystalline when deposited at 250°C or lower. A subtle effect of substrate orientation and multilayer periodicity appears to contribute to the more randomly oriented polycrystallinity, which also lowers the thermal conductivity. These results are compared with PbTe epitaxial results on BaF2 (111).


2002 ◽  
Vol 17 (5) ◽  
pp. 1092-1095 ◽  
Author(s):  
Gaojie Xu ◽  
Ryoji Funahashi ◽  
Ichiro Matsubara ◽  
Masahiro Shikano ◽  
Yuqin Zhou

Polycrystalline samples of Ca1-xBixMnO3 (0.02 ≤ x ≤ 0.20) were studied by means of x-ray diffraction, electrical resistivity (ρ), thermoelectric power (S), and thermal conductivity (κ) at high temperature. Bi doping leads to the lattice parameters a, b, and c increasing. And the ρ and the absolute value of S decrease rapidly with Bi doping. The largest power factor, S2/ρ, is obtained in the x = 0.04 sample, which is 3.6×10−4 Wm−1 K−2 at 400 K. The figures of merit (Z = S2/ρκ) for this sample and 1.0×10−4 and 0.86 × 10−4 K−1 at 600 and 1000 K, respectively.


1972 ◽  
Vol 50 (3) ◽  
pp. 196-205 ◽  
Author(s):  
M. J. Laubitz ◽  
T. Matsumura

The thermal conductivity, electrical resistivity, and absolute thermoelectric power of pure palladium have been determined from 90 to 1300 K in two experimental systems of proven reliability. These properties are compared with the sparse available literature data, and show large deviations from them, particularly for the thermal conductivity at high temperatures. The results are also analyzed in terms of a simple two-band model, where one band contains the carriers, and the other acts as a trap into which phonons scatter the carriers. When the recent density of states values of Mueller et al. are used, the model predicts correctly the temperature variation of the electrical resistivity, and reasonably well its observed magnitude and the observed Wiedemann–Franz ratio. However, the model fails badly in respect to the absolute thermoelectric power, predicting values twice as large as the observed ones. Modifications to the model are suggested which may improve the fit between the predicted and observed values.


Alloy Digest ◽  
2005 ◽  
Vol 54 (12) ◽  

Abstract Wieland K-88 is a copper alloy with very high electrical and thermal conductivity, good strength, and excellent stress relaxation resistance at elevated temperatures. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CU-738. Producer or source: Wieland Metals Inc.


Small ◽  
2021 ◽  
pp. 2102128
Author(s):  
Taehun Kim ◽  
Seongkyun Kim ◽  
Eungchul Kim ◽  
Taesung Kim ◽  
Jungwan Cho ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natsumi Komatsu ◽  
Yota Ichinose ◽  
Oliver S. Dewey ◽  
Lauren W. Taylor ◽  
Mitchell A. Trafford ◽  
...  

AbstractLow-dimensional materials have recently attracted much interest as thermoelectric materials because of their charge carrier confinement leading to thermoelectric performance enhancement. Carbon nanotubes are promising candidates because of their one-dimensionality in addition to their unique advantages such as flexibility and light weight. However, preserving the large power factor of individual carbon nanotubes in macroscopic assemblies has been challenging, primarily due to poor sample morphology and a lack of proper Fermi energy tuning. Here, we report an ultrahigh value of power factor (14 ± 5 mW m−1 K−2) for macroscopic weavable fibers of aligned carbon nanotubes with ultrahigh electrical and thermal conductivity. The observed giant power factor originates from the ultrahigh electrical conductivity achieved through excellent sample morphology, combined with an enhanced Seebeck coefficient through Fermi energy tuning. We fabricate a textile thermoelectric generator based on these carbon nanotube fibers, which demonstrates high thermoelectric performance, weavability, and scalability. The giant power factor we observe make these fibers strong candidates for the emerging field of thermoelectric active cooling, which requires a large thermoelectric power factor and a large thermal conductivity at the same time.


2017 ◽  
Vol 46 (18) ◽  
pp. 5872-5879 ◽  
Author(s):  
Mandvi Saxena ◽  
Tanmoy Maiti

Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency.


2006 ◽  
Vol 317-318 ◽  
pp. 501-504 ◽  
Author(s):  
Mineaki Matsumoto ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Effect of La2O3 addition on thermal conductivity and high temperature stability of YSZ coating produced by EB-PVD was investigated. La2O3 was selected as an additive because it had a significant effect on suppressing densification of YSZ. The developed coating showed extremely low thermal conductivity as well as high resistance to sintering. Microstructural observation revealed that the coating had fine feather-like subcolumns and nanopores, which contributed to limit thermal transport. These nanostructures were thought to be formed by suppressing densification during deposition.


Sign in / Sign up

Export Citation Format

Share Document