Influence of Die and Punch Profile Radii on Deep Drawing Force and Punch Load- Displacement Diagram

Author(s):  
M. Mansourinejad ◽  
B. Mirzakhani ◽  
H. Pishbin ◽  
A. Amadeh ◽  
B. Farshchian ◽  
...  
Author(s):  
Lucas Alexandre de Carvalho ◽  
Frederico Ozanan Neves ◽  
Alex Sandro Payão dos Santos

Author(s):  
Dietrich Bauer ◽  
Regine Krebs

Abstract For a deep drawing process some important controllable variables (factors) upon the maximum drawing force are analyzed to find a setting adjustment for these process factors that provides a very low force for the metal forming process. For this investigation an orthogonal array L18 with three-fold replication is used. To find the optimum of the process, the experimental results are analyzed in accordance with the robust-design-method according to Taguchi (Liesegang et. al., 1990). For this purpose, so-called Signal-to-Noise-ratios are calculated. The analysis of variance for this S/N-ratios leads to a mathematical model for the deep drawing process. This model allows to find the pressumed optimal settings of the investigated factors. In the following, a confirmation experiment is carried out by using these optimal settings. The maximum drawing force of the confirmation experiment does not correspond with the confidence interval, which was calculated by analysis of variance techniques. So the predicted optimum of the process does not lead to a metal forming process with very low deep drawing force. The comparison with a full factorial plan shows that there are interactions between the investigated factors. These interactions could not be discovered by the used orthogonal array. Thus the established mathematical model does not describe the relation between the factors and deep drawing force in accordance with the practical deep drawing conditions.


1973 ◽  
Vol 95 (3) ◽  
pp. 895-903 ◽  
Author(s):  
M. H. Pope ◽  
J. T. Berry

The present work is introduced and is shown to be a logical extension of work by Chung and Swift, Ray and Berry, et al. The authors introduce the deep drawing process and analyze the stresses due to radial drawing (including friction), bending the sheet, unbending the sheet, and die profile friction. From these stresses, an expression for the total punch load is developed. The authors also describe the experimental work in which determinations are made of the work hardening exponents, the anisotropic coefficients, the friction coefficients, and the total punch load. The paper concludes by comparing the numerical evaluation of the maximum punch load with that determined from experiments.


2013 ◽  
Vol 315 ◽  
pp. 246-251 ◽  
Author(s):  
Susila Candra ◽  
I. Made Londen Batan

Drawbead are often used to control the flow of material, stress and deep drawing force in the flange area. This paper discussed the drawbead (fully, not fully and without drawbead) that combined with variations in the blank holder force against restriction of material flow and drawbead restriction force of deep drawing with palm oil lubrication. In this paper, analytical and experiments are used to predict the drawbead restraining and deep drawing force. The tin steel sheet with a thickness of 0.2 mm is used as speciment. The results obtained, that the application fully drawbead be very effective in controlling the flow of materials in the flange, as compared to not fully and without drawbead. In the beginning of the process (punch stroke < 4 mm), the magnitude of restraining force and deep drawing force can be increased. And, the magnitude of Radial Stress increases, conversely the magnitude of tangential stress decreased. This can prevent the occurrence optimum blank holder force is recommended in range 4394-8788 N. Comparisons of results between the analysis and experiments show the phenomenon is similar.


2015 ◽  
Vol 760 ◽  
pp. 379-384 ◽  
Author(s):  
Lucian Lazarescu ◽  
Ioan Nicodim ◽  
Dan Sorin Comsa ◽  
Dorel Banabic

In this study, the influence of the blank-holding force (BHF) on the drawing force (DF) in the deep-drawing process of cylindrical and square cups has been investigated experimentally. For this purpose, different constant and variable BHFs have been applied to AA6016-T4 aluminum alloy and DC04 steel sheets during the forming process. It has been observed that an increased constant BHF leads to an increase of DF. On the other hand, the variable BHF approach, in which the BHF decreases in six steps throughout the punch stroke, reduces the DF.


Author(s):  
Saeed Hajiahmadi ◽  
Majid Elyasi ◽  
Mohsen Shakeri

In this research, geometric parameters were given in dimensionless form by the Π- Buckingham dimensional analysis method in the dimensionless group for deep drawing of a round cup. To find the best group of dimensionless parameters and the fittest dimensionless relational model, three scales of the cup are evaluated numerically by a commercial finite element software and stepwise regression modeling. After analyzing all effective geometric parameters, a fittest relational model among dimensionless parameters is found. In addition, the results of the new dimensionless model were compared with the simulation process and experimental tests. From the results, it is inferred that the geometric qualities of a large scale can be predicted with a small scale by the proposed dimensionless model. Comparing the results of the dimensionless model with experimental tests shows that the proposed dimensionless model has fine precision in the determination of geometrical parameters and drawing force estimation. Moreover, to evaluate the accuracy of the proposed dimensionless model, the predicted value of the model has been compared by the experimental results. It is shown that the dimensionless ratios of geometrical parameters can significantly affect the estimation of the drawing force by the proposed dimensionless model, but based on similarity law, because of the constant value of these dimensionless parameters in different scales, they could not be used for dimensionless analysis separately. It is also inferred that because of the effect of contact area on the coefficient of friction, which is changed by scale changing, the only dimensionless parameter that can significantly change the drawing force is the coefficient of friction. Finally, it is shown that the dimensionless geometrical parameter and the coefficient friction should be combined for dimensionless analysis.


Author(s):  
Saeed Hajiahmadi ◽  
Majid Elyasi ◽  
Mohsen Shakeri

AbstractIn this research, geometric parameters were given in dimensionless form by the Buckingham pi dimensional analysis method, and a series of dimensionless groups were found for deep drawing of the round cup. To find the best group of dimensionless geometric parameters, three scales are evaluated by commercial FE software. After analyzing all effective geometric parameters, a fittest relational model of dimensionless parameters is found. St12 sheet metals were used for experimental validation, which were formed at room temperature. In addition, results and response parameters were compared in the simulation process, experimental tests, and proposed dimensionless models. By looking at the results, it very well may be inferred that geometric qualities of a large scale can be predicted with a small scale by utilizing the proposed dimensionless model. Comparison of the outcomes for dimensionless models and experimental tests shows that the proposed dimensionless models have fine precision in determining geometrical parameters and drawing force estimation. Moreover, generalizing proposed dimensionless model was applied to ensure the estimating precision of geometric values in larger scales by smaller scales.


2010 ◽  
Vol 452-453 ◽  
pp. 65-68 ◽  
Author(s):  
Z. Qian ◽  
Guang Ye ◽  
Erik Schlangen ◽  
Klaas van Breugel

The fracture processes in cement paste at microscale are simulated by the 3D lattice fracture model based on the microstructure of hydrating cement paste. The uniaxial tensile test simulation is carried out to obtain the load-displacement diagram and microcracks propagation for a Portland cement paste specimen in the size of 100×100×100 µm3 at the degree of hydration 69%. The Young's modulus, tensile strength, strain at peak load and fracture energy are computed on the basis of the load-displacement diagram.


2014 ◽  
Vol 622-623 ◽  
pp. 1152-1157 ◽  
Author(s):  
Sang Woo Kim ◽  
Young Seon Lee

This paper presents experimental and numerical investigations on the effect of ultrasonic vibration on cylindrical cup drawing processes of a cold rolled steel sheet (SPCC). An experimental apparatus to superimpose high frequency oscillation on deep drawing processes was constructed by installing ultrasonic vibration generators consist of piezoelectric transducer and resonator to the die. Conventional and vibration-assisted cylindrical deep drawing tests were carried out for various drawing ratios, and the limiting drawing ratio (LDR) was compared. In order to evaluate the contribution of ultrasonic vibration to the reduction of friction between tools and a material quantitatively, finite element analyses were carried out. Through a series of parametric analyses, friction coefficients which minimize the differences of punch load histories between the experiment and simulation were determined. The results showed that the application of ultrasonic vibration make for improving LDR by reducing the friction between tools and the material, effectively.


1997 ◽  
Vol 119 (3) ◽  
pp. 341-349 ◽  
Author(s):  
H. B. Shim ◽  
D. Y. Yang

Both cylindrical cup drawing and square cup drawing are analyzed using both membrane analysis and shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and anisotropy is used for the analysis of elastic-plastic non-steady deformation. The corresponding experiments are carried out to show the validity of the analysis. Comparisons are made in punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both methods of analysis show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agreement with the experiment. For the square cup deep drawing, both membrane and shell analysis show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.


Sign in / Sign up

Export Citation Format

Share Document