Low-temperature buffer layer for growth of a low-dislocation-density SiGe layer on Si by molecular-beam epitaxy

1996 ◽  
Vol 79 (2) ◽  
pp. 1167 ◽  
Author(s):  
H. Chen ◽  
L. W. Guo ◽  
Q. Cui ◽  
Q. Hu ◽  
Q. Huang ◽  
...  
2020 ◽  
Vol 116 (19) ◽  
pp. 192105 ◽  
Author(s):  
S. Inagaki ◽  
M. Nakamura ◽  
N. Aizawa ◽  
L. C. Peng ◽  
X. Z. Yu ◽  
...  

2002 ◽  
Vol 743 ◽  
Author(s):  
C. D. Lee ◽  
R. M. Feenstra ◽  
J. E. Northrup ◽  
L. Lymperakis ◽  
J. Neugebauer

ABSTRACTM-plane GaN(1100) is grown by plasma assisted molecular beam epitaxy on ZnO(1100) substrates. A low-temperature GaN buffer layer is found to be necessary to obtain good structural quality of the films. Well oriented (1100) GaN films are obtained, with a slate like surface morphology. On the GaN(1100) surfaces, reconstructions with symmetry of c(2×2) and approximate “4×5” are found under N- and Ga-rich conditions, respectively. We propose a model for Ga-rich conditions with the “4×5” structure consisting of ≥ 2 monolayers of Ga terminating the GaN surface.


CrystEngComm ◽  
2014 ◽  
Vol 16 (46) ◽  
pp. 10721-10727 ◽  
Author(s):  
Fangliang Gao ◽  
Lei Wen ◽  
Yunfang Guan ◽  
Jingling Li ◽  
Xiaona Zhang ◽  
...  

The as-grown In0.53Ga0.47As epi-layer grown on Si substrate by using low-temperature In0.4Ga0.6As buffer layer with in-situ annealing is of a high degree of structural perfection.


1991 ◽  
Vol 256 ◽  
Author(s):  
H. Presting ◽  
U. Menczigar ◽  
G. Abstreiter ◽  
H. Kibbel ◽  
E. Kasper

ABSTRACTP-i-n doped short-period SimGen strained layer superlattices (SLS) are grown on (100) silicon substrates by low temperature molecular beam epitaxy (300C°<∼Tg<∼400C°). The SLS's are grown with period lengths around 10 monolayers (ML) to a thickness of 250nm on a rather thin (50nm) homogeneous Si1−ybGeyb alloy buffer layer serving as strain symmetrizing substrate. Photoluminescence at T=5K is observed for various SimGen SLS samples, the strongest signal was found for a Si5 Ge5 SLS. Samples with identical SLS's but different buffer layer composition and thicknesses are grown to study the influence of strain on the PL. Electroluminescence (EL) at the same energy range is observed from mounted SimGen SLS mesa and waveguide diodes up to T=130K – for the first time reported in strain symmetrized short-period SimGen SLS. The intensity and peak positon of the EL signal was found to be dependent on the injected electrical power.


Author(s):  
B. Riah ◽  
Julien Camus ◽  
Abdelhak Ayad ◽  
Mohammad Rammal ◽  
Raouia Zernadji ◽  
...  

This paper reports the effect of silicon substrate orientation and aluminum nitride buffer layer deposited by molecular beam epitaxy on the growth of aluminum nitride thin films deposited by DC magnetron sputtering technique at low temperature. The structural analysis has revealed a strong (0001) fiber texture for both substrates Si (100) and (111) and a hetero-epitaxial growth on few nanometers AlN buffer layer grown by MBE on Si (111) substrate. SEM images and XRD characterization have shown an enhancement in AlN crystallinity thanks to AlN (MBE) buffer layer. Raman spectroscopy indicated that the AlN film was relaxed when it deposited on Si (111), in compression on Si (100) and under tension on AlN buffer layer grown by MBE/Si (111) substrates, respectively. The interface between Si (111) and AlN grown by MBE is abrupt and well defined; contrary to the interface between AlN deposited using PVD and AlN grown by MBE. Nevertheless, AlN hetero-epitaxial growth was obtained at low temperature (&lt;250&deg;C).


2002 ◽  
Vol 743 ◽  
Author(s):  
N. Onojima ◽  
J. Suda ◽  
H. Matsunami

ABSTRACTAluminum nitride (AlN) has been grown on 6H-silicon carbide (SiC) substrates with the non-polar (1120) face using rf plasma-assisted molecular-beam epitaxy (rf-MBE). Reflection high-energy electron diffraction (RHEED) revealed that AlN and 6H-SiC (1120) had an exact epitaxial relationship, i.e., [1120]AlN|[1120]SiC and [0001]AlN∥[0001]SiC. From the result of microscopic Raman scattering spectroscopy, the stacking structure of the AlN epitaxial layer was suggested to be a 2H structure, not a 6H structure. A directly grown AlN layer and layer with AlN low-temperature (LT) buffer layer were investigated based on atomic force microscopy (AFM) and X-ray diffraction (XRD).


2002 ◽  
Vol 92 (11) ◽  
pp. 6880-6885 ◽  
Author(s):  
S. W. Lee ◽  
H. C. Chen ◽  
L. J. Chen ◽  
Y. H. Peng ◽  
C. H. Kuan ◽  
...  

1990 ◽  
Vol 19 (11) ◽  
pp. 1323-1330 ◽  
Author(s):  
R. S. Berg ◽  
Nergis Mavalvala ◽  
Tracie Steinberg ◽  
F. W. Smith

2003 ◽  
Vol 764 ◽  
Author(s):  
F. Yun ◽  
L. He ◽  
M. A. Reshchikov ◽  
H. Morkoç ◽  
J. Jasinski ◽  
...  

AbstractGaN layers were grown on AlGaN with nanopipes by molecular beam epitaxy (MBE) and analyzed. AlGaN films were grown by MBE using rf-plasma nitrogen source under metal-rich condition. Within the Al composition range of 0.5-0.6, open-end nanopipes were formed at the surface of AlGaN films with a density of ∼6×109 cm-2 and a size ranging from 10 to 20 nm. These nanopipes, observed within ∼300 nm of the surface, served as a nanoporous AlGaN template for re-growth of GaN epilayers. GaN epilayers grown to different thickness by MBE were studied for their microstructural and optical properties. For an AlGaN buffer layer with dislocation density of 3×1010 cm-2 near its surface, the overlaying GaN layers with thickness ranging from 0.1 μm to ∼2μm were grown and analyzed by transmission electron microscopy for dislocation density. The GaN layer started with hexagonal islands on the nanopiped AlGaN and began to coalesce at about 0.1μm thickness. At a thickness of 2.0 μm, the dislocation density reduced to ∼1×109 cm-2. Low temperature photoluminescence data demonstrate the improved optical quality of GaN epilayer grown on the porous AlGaN buffer layer.


Sign in / Sign up

Export Citation Format

Share Document