An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study

2014 ◽  
Vol 85 (4) ◽  
pp. 043106 ◽  
Author(s):  
Debajeet K. Bora ◽  
Per-Anders Glans ◽  
John Pepper ◽  
Yi-Sheng Liu ◽  
Chun Du ◽  
...  
2016 ◽  
Vol 163 (10) ◽  
pp. H906-H912 ◽  
Author(s):  
Tobias Binninger ◽  
Emiliana Fabbri ◽  
Alexandra Patru ◽  
Marios Garganourakis ◽  
Jun Han ◽  
...  

1998 ◽  
Vol 5 (3) ◽  
pp. 887-889
Author(s):  
Yoshikazu Fujii ◽  
Takeshi Nakamura ◽  
Mutsumi Kai ◽  
Kentaroh Yoshida

A compact ultra-high-vacuum (UHV) X-ray diffractometer for surface glancing X-ray scattering has been constructed. All the equipment, including a rotating-anode source of 18 kW and a UHV specimen chamber, is arranged on one optical table of dimensions 70 × 90 cm. The specimen chamber is 14 cm in diameter and 20 cm high and can be evacuated up to 3 × 10−8 Pa. It is equipped with two Be windows of thicknesses 0.2 and 0.4 mm. Specimen orientation in the vacuum is controlled from the outside. The specimen can be heated up to 773 K. The chamber has two evaporation cells and can be used for in situ observations of growing crystal surfaces. Using this instrument, we observed a mechanically polished Ag surface and successfully made an in situ observation of the layer-by-layer growth of a PbSe(111) surface. The instrument will be useful for preliminary experiments using laboratory sources, prior to final measurements at synchrotron radiation facilities.


2018 ◽  
Vol 20 (11) ◽  
pp. 7862-7874 ◽  
Author(s):  
Ilyas Unlu ◽  
Julie A. Spencer ◽  
Kelsea R. Johnson ◽  
Rachel M. Thorman ◽  
Oddur Ingólfsson ◽  
...  

Electron-induced surface reactions of (η5-C5H5)Fe(CO)2Mn(CO)5were exploredin situunder ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry.


1993 ◽  
Vol 37 ◽  
pp. 413-418
Author(s):  
Joanne Levine Parrill ◽  
Jerome B. Cohen ◽  
Yip-Wah Chung

AbstractAn ultra-high vacuum chamber designed for in situ grazing incidence small angle x-ray scattering (GISAXS) surface analysis is described. Unique features of this equipment are the precision rotary feedthrough for angular alignment of the sample, the sample heating design, the Be window arrangement, and the compatibility of this chamber with both a rotating anode and a synchrotron beamline. This chamber was used as part of a GISAXS camera utilizing a 18 kW Rigaku rotating anode, pin-hole collimation, and a position sensitive detector. The resolution of this camera was 0.007 A-1 with a 1.4 mm wide beamstop and CuKα


2015 ◽  
Vol 22 (2) ◽  
pp. 366-375 ◽  
Author(s):  
Marie Clancy ◽  
Mark J. Styles ◽  
Colleen J. Bettles ◽  
Nick Birbilis ◽  
Miao Chen ◽  
...  

This paper describes the quantitative measurement, byin situsynchrotron X-ray diffraction (S-XRD) and subsequent Rietveld-based quantitative phase analysis and thickness calculations, of the evolution of the PbO2and PbSO4surface layers formed on a pure lead anode under simulated copper electrowinning conditions in a 1.6 MH2SO4electrolyte at 318 K. This is the first report of a trulyin situS-XRD study of the surface layer evolution on a Pb substrate under cycles of galvanostatic and power interruption conditions, of key interest to the mining, solvent extraction and lead acid battery communities. The design of a novel reflection geometry electrochemical flow cell is also described. Thein situS-XRD results show that β-PbO2forms immediately on the anode under galvanostatic conditions, and undergoes continued growth until power interruption where it transforms to PbSO4. The kinetics of the β-PbO2to PbSO4conversion decrease as the number of cycles increases, whilst the amount of residual PbO2increases with the number of cycles due to incomplete conversion to PbSO4. Conversely, complete transformation of PbSO4to β-PbO2was observed in each cycle. The results of layer thickness calculations demonstrate a significant volume change upon PbSO4to β-PbO2transformation.


2016 ◽  
Vol 163 (10) ◽  
pp. H913-H920 ◽  
Author(s):  
Jérémy Tillier ◽  
Tobias Binninger ◽  
Marios Garganourakis ◽  
Alexandra Patru ◽  
Emiliana Fabbri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document