scholarly journals Mechanical properties of composite rebar under static and short-term dynamic loading

2017 ◽  
Author(s):  
Vasilii Plevkov ◽  
Igor Baldin ◽  
Konstantin Kudyakov ◽  
Andrei Nevskii
2020 ◽  
Vol 315 ◽  
pp. 07002
Author(s):  
Zaur Galyautdinov ◽  
Oleg Kumpyak ◽  
Daud Galyautdinov

The formation of non-intersecting cracks in stress-strained ferroconcrete elements leads to separation of concrete strips between the cracks. The results of the experimental research indicate a significant decrease of the durability and deformability of the stress-strained concrete strips between cracks both under static and short-term dynamic loading. At the same time physico-mechanical properties depend on the straining deformations and rebars’ inclination angle towards the cracks. The existing theoretical and experimental results evaluate only the durability of the concrete strips between the cracks. The current paper presents the results of experimental and theoretical studies on the dynamic deformability of the stress-strained discs between the cracks. The statistic analysis of the experimental data is done; on the basis of the analysis we suggest the dependencies, characterizing the deformability of the concrete strips during the short-term dynamic load depending on the level of the straining deformations and rebars’ inclination angle towards the cracks.


2020 ◽  
Vol 92 (8) ◽  
pp. 1329-1340
Author(s):  
A. G. Kolmakov ◽  
A. S. Baikin ◽  
S. V. Gudkov ◽  
K. N. Belosludtsev ◽  
E. O. Nasakina ◽  
...  

AbstractThe paper describes synthesis and testing of novel biodegradable polylactide-based polymer membranes with desired mechanical properties, which are capable of sustained and directed release of biomacromolecules with high molecular weight (in particular, streptokinase; m.w. 47 kDa). Streptokinase is a pharmaceutical agent, possessing a pronounced thrombolytic activity. The membranes synthesized had a percentage elongation of 2–11% and tensile strength of 25–85 MPa. They were biodegradable – yet being stored in aqueous media in the absence of biological objects, would be dissolved by no more than 10% in 6 months. The synthesized membranes were capable of controlled release of streptokinase into the intercellular space, with the enzyme retaining more than 90% of its initial activity. The rate of streptokinase release from the membranes varied from 0.01 to 0.04 mg/day per cm2 of membrane surface. The membrane samples tested in the work did not have any short-term toxic effects on the cells growing de novo on the membrane surface. The mitotic index of those cells was approximately 1.5%, and the number of non-viable cells on the surface of the polymer films did not exceed 3–4% of their total amount. The implantation of the synthesized polymers – as both individual films and coatings of nitinol stents – was not accompanied by any postoperative complications. The subsequent histological examination revealed no abnormalities. Two months after the implantation of polymer films, only traces of polylactide were found in the implant-surrounding tissues. The implantation of stents coated with streptokinase-containing polymers resulted in the formation of a mature and thick connective-tissue capsules. Thus, the polylactide membranes synthesized and tested in this work are biodegradable, possess the necessary mechanical properties and are capable of sustained and directed release of streptokinase macromolecules.


2007 ◽  
Vol 344 ◽  
pp. 383-390 ◽  
Author(s):  
Marion Merklein ◽  
Uwe Vogt

Tailored Heat Treated Blanks (THTB) are blanks that exhibit locally different strength specifically optimized for the succeeding forming process. The strength distribution is set by a local, short-term heat treatment modifying the mechanical properties of the material. Hence, THTB allow enhancing forming limits significantly leading to shorter and more robust manufacture process chains. In order to qualify the use of THTB under quasi series conditions, the interdependencies of the blank’s local heat treatment and the entire process chain of the car body manufacture have to be analyzed. In this respect, the impact of a short-term heat treatment on the mechanical properties of AA6181PX, a commonly used aluminum alloy in today’s car bodies, was studied. Also the influence of a short-term heat treatment on the coil lubricant, usually already applied by the material supplier, was given a closer look. Based on these experiments process restrictions for the application of THTB in an industrial automotive environment were derived and a process window for the THTB design was set up. In conclusion, strategies were defined how to enhance the found process boundaries leading to a more robust process window.


Author(s):  
Chaowen Li ◽  
Shuangjian Chen ◽  
Kun Yu ◽  
Zhijun Li

GH3535 supperalloy, whose grade of ASME is UNS N10003, is currently considered as a candidate material for solid-fuel and fluid-fuel molten salt reactor in china. During the development of procedures for welding GH3535 superalloy, consideration should always be given to the possibility that repair welding may be necessary. This paper presents weld repairs of GH3535 alloy rolled plates using gas tungsten arc welding with filler metal. The purpose of this work is to evaluate the low heat input process for weld repair of GH3535 alloy plates about the microstructure features and mechanical properties. The results demonstrated that sound joints without defects could be obtained after weld repairs. Due to repair thermal cycles on the original weld seam, the size of carbide precipitate became large, but repair welding is found to cause no decrease in short-term time-independent strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Chen ◽  
Jinjin Zhang ◽  
Jin Yang ◽  
Feilong Ye

The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.


2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
F Moura ◽  
R Varley ◽  
C Yao

Abstract Aim Despite several decades of research in tissue engineering, reconstructing a 3D human-sized ear that can stand the test of time has remained a challenge. Autologous cartilage reconstruction remains the main treatment choice despite the associated morbidity. Progress in the field has been made and several studies have used tissue-engineered implants in immunocompetent animals with promising results. Method This study critically reviews and assesses the characteristics that make auricular reconstruction so challenging and how far research has come in addressing the following: mechanical properties; vascularisation; immune response; cell sourcing; surgical attachments; allografts; and cost. Results The question is whether tissue engineering will realistically replace autologous cartilage reconstruction in the short-term, or will advances in other areas, outlined in this article, manage to provide suitable and aesthetically accurate scaffolds. Conclusions Advances in tissue engineering are slowly progressing and utilise advances in both biomaterial design and 3D bioprinting to try and address the challenges of auricular reconstruction. Tissue engineering is still a promising solution to auricular reconstruction but still requires further research before becoming a reality.


1980 ◽  
Vol 17 (4) ◽  
pp. 498-508 ◽  
Author(s):  
R. N. Yong ◽  
D. Taplin ◽  
G. Wiseman

The importance of disturbance and remoulding to the alteration of mechanical properties of sensitive soils has been well documented in the geotechnical literature both in terms of laboratory and field behaviours. Man-made transient dynamic input such as dynamite blasting, heavy vehicles, and train movement have been suspected of being capable of causing a reduction in the in situ strength parameters of sensitive clays. A laboratory test program was undertaken to determine whether dynamic loading at peak stress levels below normal failure strength caused similar changes in the mechanical properties, and specifically to quantify the phenomena.In order to simulate highly overconsolidated conditions most of the tests were carried out under conditions of no confining pressure, although supplemental data were obtained from consolidated undrained tests. Some of the variables examined in this program were confining pressure, mean deviatoric stress, cyclic deviatoric stress, cyclic strain, number of applications, frequency, and reference strength. In order to compare the effect of dynamic input with the long-term creep phenomena, a simultaneous constant load program was undertaken.In general terms, the study indicates that under the prestated laboratory test conditions no major reduction in peak strength was found under dynamic loading, and that failure would occur at comparative stress levels under dead-load conditions, but required a greater time. In addition, examination of the sample after failure revealed that any remoulding of the sample appeared to be restricted to the area adjacent to the shear zone.


Sign in / Sign up

Export Citation Format

Share Document