Vertically coupled double-microdisk lasers composed of InGaAs quantum dots-in-a-well active layers

2017 ◽  
Vol 121 (20) ◽  
pp. 203107
Author(s):  
J. Y. Hsing ◽  
T. E. Tzeng ◽  
T. S. Lay ◽  
M. H. Shih
2018 ◽  
Vol 1124 ◽  
pp. 041020
Author(s):  
I Y Agafonov ◽  
N V Kryzhanovskaya ◽  
E I Moiseev ◽  
A S Dragunova ◽  
M V Fetisova ◽  
...  

Author(s):  
Zolile Wiseman Dlamini ◽  
Sreedevi Vallabhapurapu ◽  
Olamide Abiodun Daramola ◽  
Potlaki Foster Tseki ◽  
Rui Werner Macedo Krause ◽  
...  

In this paper, we report on the resistive switching (RS) and conduction mechanisms in devices consisting of CdTe/CdSe core–shell quantum dots embedded chitosan composites active layer. Two devices with active layers sandwiched between (1) Al and Ag, and (2) ITO and Ag electrodes were studied. Both devices exhibited bipolar memory behavior with [Formula: see text] V and [Formula: see text][Formula: see text]V, for the Al-based device, while [Formula: see text] V and [Formula: see text][Formula: see text]V were observed for the ITO-based device, enabling both devices to be operated at low powers. However, the switching mechanisms of both devices were different, i.e., RS in Al device was attributed to conductive bridge mechanism, while space-charge-limited driven conduction filament attributed the switching mechanism of the ITO device. Additionally, the Al-based device showed long retention ([Formula: see text][Formula: see text]s) and a reasonable large ([Formula: see text]) ON/OFF ratio. Additionally, for this device, we also observed sweeping cycle-induced reversal of voltage polarity of the [Formula: see text] and [Formula: see text]. In contrast, we observed that increasing sweeping cycles resulted in an exponential decrease of the OFF-state resistance of the ITO-based device.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 291 ◽  
Author(s):  
Askar A. Maxim ◽  
Shynggys N. Sadyk ◽  
Damir Aidarkhanov ◽  
Charles Surya ◽  
Annie Ng ◽  
...  

Perovskite solar cells (PSCs) with a standard sandwich structure suffer from optical transmission losses due to the substrate and its active layers. Developing strategies for compensating for the losses in light harvesting is of significant importance to achieving a further enhancement in device efficiencies. In this work, the down-conversion effect of carbon quantum dots (CQDs) was employed to convert the UV fraction of the incident light into visible light. For this, thin films of poly(methyl methacrylate) with embedded carbon quantum dots (CQD@PMMA) were deposited on the illumination side of PSCs. Analysis of the device performances before and after application of CQD@PMMA photoactive functional film on PSCs revealed that the devices with the coating showed an improved photocurrent and fill factor, resulting in higher device efficiency.


Author(s):  
М.В. Фетисова ◽  
А.А. Корнев ◽  
А.С. Букатин ◽  
Н.А. Филатов ◽  
И.Е. Елисеев ◽  
...  

The paper demonstrates the possibility of using microdisk lasers 10 µm in diameter with an active region based on InAs/InGaAs quantum dots synthesized on GaAs substrates for biodetection. As a detectable object we used chimeric monoclonal antibodies to the CD20 protein covalently attached to the surface of microdisk lasers operating under optical pumping at room temperature in an aqueous medium. It was shown that the attached secondary antibodies cause an increase in the threshold power of lasing and also to an increase in the half-width of the resonant laser line.


2020 ◽  
Vol 8 (17) ◽  
pp. 2000557 ◽  
Author(s):  
Ruiqi Guo ◽  
Chunxiong Bao ◽  
Feng Gao ◽  
Jianjun Tian

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1215 ◽  
Author(s):  
Xu Zhang ◽  
Qing Li ◽  
Shikai Yan ◽  
Wei Lei ◽  
Jing Chen ◽  
...  

Taking advantage of a large light absorption coefficient, long charge carrier diffusion length and low-cost solution processing, all-inorganic halides perovskite CsPbBr3 quantum dots (QDs) are combined with a ZnO QD film to construct a high-performance photodetector. In this work, a novel photodetector device based on transistor structure with dual active layers composed of CsPbBr3 and ZnO film is proposed. In this structure, CsPbBr3 film functions as the light-absorbing layer and ZnO film acts as the conducting layer. Owing to the high electron mobility and hole-blocking nature of the ZnO QDs film, the photo-induced electron-hole pairs can be separated efficiently. As a result, the device exhibits high performance with response of 43.5 A/W, high detection up to 5.02 × 1011 Jones and on/off ratio of 5.6 × 104 under 365 nm light illumination. Compared with the ZnO-only phototransistor (the photodetector with the structure of transistor) the performance of the CsPbBr3 phototransistor showed significant improvement, which is superior to the majority of photodetectors prepared by perovskite. This work demonstrates that the ZnO QDs film can be applied in the photodetector device as a functional conducting layer, and we believe that the hybrid CsPbBr3/ZnO phototransistor would promote the development of low-cost and high-performance photodetectors.


2019 ◽  
Vol 45 (12) ◽  
pp. 1178-1181
Author(s):  
M. V. Fetisova ◽  
A. A. Kornev ◽  
A. S. Bukatin ◽  
N. A. Filatov ◽  
I. E. Eliseev ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (32) ◽  
pp. 17914-17920 ◽  
Author(s):  
Zicha Li ◽  
Suling Zhao ◽  
Zheng Xu ◽  
Wageh Swelm ◽  
Dandan Song ◽  
...  

Lead sulfide (PbS) quantum dots (QDs) have been incorporated into PTB7:PC71BM BHJ active layers to fabricate polymer solar cells (PSCs) and gather on the top surface of active layers to form an ultrathin interlayer.


2016 ◽  
Vol 769 ◽  
pp. 012056 ◽  
Author(s):  
E I Moiseev ◽  
N V Kryzhanovskaya ◽  
Yu S Polubavkina ◽  
M V Maximov ◽  
M M Kulagina ◽  
...  

2021 ◽  
Vol 2086 (1) ◽  
pp. 012081
Author(s):  
N A Fominykh ◽  
E I Moiseev ◽  
Ju A Guseva ◽  
M V Maximov ◽  
A I Lihachev ◽  
...  

Abstract We studied the output optical power of microdisk lasers with InGaAs/GaAs quantum dots active region. An increase in the number of layers in the active region in the waveguide from 2 to 6 leads to increase in the peak output optical power due probably to increase of the gain. We also observe a corresponding increase of the threshold current due to the increase on the transparence current. The maximal optical power is achieved for structure with 6 layers at approximately 60 mA injection current. Further increase of the number of the QD layers to 10 results in increase of the threshold current and sudden drop of the output power.


Sign in / Sign up

Export Citation Format

Share Document