scholarly journals The influence of aspect ratio on the iso-thermal flow characteristics of multiple confined jets

2018 ◽  
Vol 30 (12) ◽  
pp. 125108 ◽  
Author(s):  
Shen Long ◽  
Timothy C. W. Lau ◽  
Alfonso Chinnici ◽  
Zhao Feng Tian ◽  
Bassam B. Dally ◽  
...  
2011 ◽  
Vol 103 ◽  
pp. 268-273
Author(s):  
Hong Jie Yan ◽  
Ping Zhou ◽  
Ze Lin Xu ◽  
Zhuo Chen ◽  
Jing Wen Mo

The flow characteristics of water in filleted microchannels were simulated based on CFD method. The flow pressure drop at different aspect ratioandRenumber were rearranged on the simulating results with laminar flow model. The results indicated that the pressure drop enlarges with the increase of in the case of the constant width of the microchannel. Within the range ofRenumber of interest, Poiseuille number of the flow is constant for differentRe, but decreases with increasing aspect ratio. An equation was fitted to describe the relationship betweenPonumber and aspect ratio, i.e. .


Mechanika ◽  
2021 ◽  
Vol 27 (3) ◽  
pp. 201-208
Author(s):  
Mustafa FEKHAR ◽  
Rachid SACI ◽  
Renée GATIGNOL

Thermal buoyancy, induced by injection or by differential heating of a tiny rod is explored to control breakdown in the core of a helical flow driven by the lid rotation of a cylinder. Three main parameters are required to characterize numerically the flow behavior; namely, the rotational Reynolds number Re, the cavity aspect ratio and the Richardson number Ri. Warm injection/rod, Ri > 0, is shown to prevent on-axis flow stagnation while breakdown enhancement is evidenced when Ri < 0. Results revealed that a bubble vortex evolves into a ring type structure which may remain robust, as observed in prior related experiments or, in contrast, disappear over a given range of parameters (Λh, Re, Ri > 0). Besides, the emergence of such a toroidal mode was not found to occur under thermal stratification induced by a differentially heated rod. Moreover, three state diagrams were established which provide detailed flow characteristics under the distinct and combined effects of buoyancy strength, viscous effects and cavity aspect ratio.


Author(s):  
Moon-Young Cho ◽  
Hyeon-Seok Seo ◽  
Youn-Jea Kim

In this study, the effect of a row of double-jet film-cooling hole configurations on the thermal-flow characteristics of gas turbine blades was examined. To investigate the effect of the interference of anti-kidney vortices, the ratios of the pitch distance and hole diameter (P/d=5, 6.25, 8.333) were considered with two different compound angles (λ=0°, 4°). The film cooling performance and the generated losses were studied. Then, the relevant mechanisms were identified and explained. A numerical study was performed using ANSYS CFX 14.5 with the shear stress transport (SST) turbulent model. The blowing ratio was kept at a constant value of M=1.5. The film cooling effectiveness and temperature distribution are graphically depicted with various geometrical configurations.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5030
Author(s):  
Junpeng Fu ◽  
Jiuju Cai

To comprehensively understand the effectiveness of external factors on flow characteristics and realize particle flow distribution evenly in bulk layers is an essential prerequisite for improving the performance of heat transfer in vertical sinter cooling beds (VSCBs). The numerical discrete element method (DEM) was applied to investigate external geometric and operational factors, such as the aspect ratio, geometry factor, half hopper angle, normalized outlet scale, and discharge velocity. Using the Taguchi method, a statistical analysis of the effect of design factors on response was performed. In this study, we focused more on external factors than granular properties, be remodelling the external factors was more useful and reliable for actual production in industries. The results showed that the most important factor was the aspect ratio, followed by the geometry factor, normalized outlet scale, half hopper angle, and discharge velocity for the dimensionless height of mass flow. In terms of the Froude number, the most influential factor was the normalized outlet scale with a contribution ratio of 33.81%, followed by the aspect ratio (22.86%), geometry factor (17.73%), discharge velocity (17.73%), and half hopper angle (11.83%).


Author(s):  
Hideo Ide ◽  
Tohru Fukano

Both vertical upward and horizontal gas-liquid two-phase flows in a flat capillary rectangular channel were studied to clarify the flow phenomena, the holdup and the frictional pressure drop. The dimension of the channel used was 9.9 mm × 1.1 mm. The orientations of the channel were with the wide side vertical and the wide side horizontal. The differences between the flow characteristics in such orientations were investigated. New correlations of holdup and frictional pressure drop for flat capillary channels are proposed, in which the effect of aspect ratio has been taken into consideration.


Author(s):  
Sun Xiao-lin ◽  
Wang Zhan-xue ◽  
Zhou Li ◽  
Shi Jing-wei ◽  
Cheng Wen

In order to increase the survivability of the fighter aircraft, the serpentine nozzle has been applied in series of stealth bombers and unmanned aerial vehicles due to its excellent potentiality of evidently suppressing the infrared radiation signatures and radar cross section emitted by engine exhausts. Among the geometric parameters of the serpentine nozzle, the aspect ratio (AR) at the nozzle exit is one of the most critical parameters for the nozzle design as the infrared suppression effect could be greatly enhanced with the increment of AR by strengthening the mixing between the exhaust plume and atmosphere; the aim of this paper is to study the influence of the AR on the flow characteristics of the double serpentine nozzle. The flow features of six double serpentine convergent nozzles, i.e. AR = 3, 5, 7, 9, 11, 15 respectively, were numerically simulated with the shear stress transport κ–ω turbulent model adopted, which had been validated by the experimental data. The characteristics of internal flow and external jet, and the aerodynamic performances of these six nozzles were compared. Results show that the Ma contours at the symmetric plane are different due to the distinct flow accelerations caused by the change of the curvature and the duct height for diverse AR, and the surface pressure and the shock wave features are different correspondingly. The lateral divergence and the lateral convergence characteristics of the nozzle configuration lead to opposite lateral flow under diverse AR, and the change of lateral width induced different lateral pressure gradient, then lead to various lateral vortex distributions. The length of potential core is the contribution of the comprehensive effects of geometry parameters, and it is decreased with the increase of AR due to the dominated effect of the increased mixing area; however, the declining rate is slowed down. The AR of 5 should be chosen for the best aerodynamic performance of the double serpentine nozzle under the qualifications to completely shield the high-temperature turbine.


Sign in / Sign up

Export Citation Format

Share Document