scholarly journals Potentiality of utilizing hybrid non-woven/woven fabric kenaf fiber composite for car door map pocket

2018 ◽  
Author(s):  
M. Y. Yuhazri ◽  
M. H. Amirhafizan ◽  
A. Abdullah ◽  
A. M. Kamarul ◽  
H. Sihombing ◽  
...  
2021 ◽  
Vol 30 ◽  
pp. 263498332110061
Author(s):  
Gunyong Hwang ◽  
Dong Hyun Kim ◽  
Myungsoo Kim

This research aims to optimize the mechanical properties of woven fabric composites, especially the elastic modulus. A micromechanics model of woven fabric composites was used to obtain the mechanical properties of the fiber composite, and a genetic algorithm (GA) was employed for the optimization tool. The structure of the fabric fiber was expressed using the width, thickness, and wave pattern of the fiber strands in the woven fabric composites. In the GA, the chromosome string consisted of the thickness and width of the fill and warp strands, and the objective function was determined to maximize the elastic modulus of the composite. Numerical analysis showed that the longitudinal mechanical properties of the strands contributed significantly to the overall elastic modulus of the composites because the longitudinal property was notably larger than the transverse property. Therefore, to improve the in-plane elastic modulus, the resulting geometry of the composites possessed large volumes of related strands with large cross-sectional areas and small strand waviness. However, the numerical results of the out-of-plane elastic modulus generated large strand waviness, which contributed to the fiber alignment in the out-of-plane direction. The findings of this research are expected to be an excellent resource for the structural design of woven fabric composites.


2013 ◽  
Vol 315 ◽  
pp. 630-634
Author(s):  
Mohd Pahmi bin Saiman ◽  
Wahab Saidin ◽  
Mat Uzir Wahit

A natural fibre-based composite from woven kenaf was fabricated using hydraulic hot press machine. Plain woven kenaf fabrics were prepared and used as reinforced material with ABS sheet followed by hot press. Woven fabric was treated using sodium hydroxide and being compare with untreated fabric. The effect of the processing temperature and time towards tensile properties of the composite were investigated. Tensile test was carried out to measure the strength of the composite towards the effect of processing temperature and time. The surface morphology of the composite was studied with Scanning Electron Microscope (SEM) and Optical Microscopic. The result shows that woven Kenaf degrade in strength when expose with high temperature and long exposure to the heat. The permeability of woven Kenaf plain fabric does not indicate a good penetration as observed by microscopy.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mohamad Zaki Abdullah ◽  
Yakubu Dan-mallam ◽  
Puteri Sri Melor Megat Yusoff

The main objective of this research is to investigate the effect of environmental degradation on the mechanical properties of kenaf/PET fiber reinforced POM hybrid composite. Kenaf and PET fibers were selected as reinforcements because of their good mechanical properties and resistance to photodegradation. The test samples were produced by compression molding. The samples were exposed to moisture, water spray, and ultraviolet penetration in an accelerated weathering chamber for 672 hours. The tensile strength of the long fiber POM/kenaf (80/20) composite dropped by 50% from 127.8 to 64.8 MPa while that of the hybrid composite dropped by only 2% from 73.8 to 72.5 MPa. This suggests that the hybrid composite had higher resistance to tensile strength than the POM/kenaf composite. Similarly, the results of flexural and impact strengths also revealed that the hybrid composite showed less degradation compared to the kenaf fiber composite. The results of the investigation revealed that the hybrid composite had better retention of mechanical properties than that of the kenaf fiber composites and may be suitable for outdoor application in the automotive industry.


Author(s):  
Ting Yang ◽  
Mengyuan Liao ◽  
Zhenjin Cui ◽  
Yuqiu Yang

Nowadays, Basalt fiber is obtained increasing attention worldwide as a kind of promising reinforced fiber in composite field, which has the excellent mechanical properties, chemical resistance, comparative low cost, easily processing and abundance resource. In this paper, polyurethane dispersion (PUD) was employed as the surface treatment for the basalt fiber-woven fabric. Basalt woven fabric was washed by acetone solution following by different pick-up ratio PUD treating. Treated BFRP and virgin one were tested by tensile test with AE equipment, comparison and analysis have been carried out in order to discuss the change of mechanical property by changing the PUD treatment’s pick-up ratio and improved mechanical and thermal properties compared with virgin one.


Nowadays, Natural Fiber Reinforced composites (NFCs) are emerging to be a good substitute for synthetic fiber reinforced composites as NFCs have many advantages such as low density, high specific strength, recyclability, low cost and good sound abatement quality etc. Among all types of NFCs, a vast study has been done on banana fiber and kenaf fiber reinforced composite. However, only limited work has been done on the banana fabric, kenaf fiber reinforced composite and the effect of their hybridization on mechanical properties. In this paper, an attempt has been made to study the mechanical properties of the banana fabric, kenaf fiber and hybrid banana fabric/kenaf fiber reinforced composites. Effect of alkali treatment on kenaf fiber reinforced composite is discussed in the paper. For the present work, plain-woven banana fabric and randomly oriented kenaf fiber are used as reinforcement while the epoxy resin is used as a matrix. samples are fabricated using hand lay-up and vacuum bagging method. Curing is done at ambient temperature (250C-300C) for 48h. Tensile, impact and hardness test has been performed on a specimen according to ASTM standards. Improvement in mechanical properties is observed after alkali (6% NaOH) treatment on kenaf fiber reinforced composite. Tensile testing behavior of randomly oriented kenaf fiber composite has been studied using Finite element method and results are compared with experimental investigations. This topic present big potential because it seeks to find solution for sustainable development with environmental concerns.


CONSTRUCTION ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 12-17
Author(s):  
G. Danoshini ◽  
A. Baqadeem ◽  
A. K. S. Al-Shakhrit ◽  
N. E. Jasni ◽  
Khairil Azman Masri

Stone mastic asphalt consists of two components of coarse aggregate and bitumen-filled mortar (bituminous blend, filler, and stabilizing additives like cellulosic or mineral fibers). Such a form of hot mix asphalt (SMA) was first developed in Germany in the mid-1960s to cope with corrosion and ribbed wheel destruction. The mixture was then known as stone mastic asphalt, which was not only immune to ribbed wheels but also has strong resistance against rutting. One of the most significant problems when constructing the stone mastic asphalt pavement is permanent deformation. By a load of traffic and the strain of the tires, much of the irreversible deformation happens in the ground. According to a previous study, researchers have stated that the kenaf fiber's physical strength and thermal characteristics are superior compared to other forms of natural fiber polymer composites, and therefore deemed a desirable applicant for elevated-performance natural fiber composite materials. Thus, the aim of this study is to assess the mechanical performance of stone mastic asphalt incorporating kenaf fiber by developing a regression model. A set of data of SMA mixture incorporating various percentages of kenaf fiber were assessed through statistical analysis in Minitab 19 by using the resilient modulus as the dependant variable in the first model and the accumulated strain from the dynamic creep test as the dependant variable in the second model. The regression models showed a positive impact of kenaf fiber as an additive in the SMA mixture.  For more future studies, it is recommended to analyze the effect of the various proportions of kenaf fiber with bitumen modification towards stone mastic asphalt performance that will render the satisfactory performance of SMA during service.


2019 ◽  
Vol 7 ◽  
pp. 601-606 ◽  
Author(s):  
Nur Adilah Abu Hassan ◽  
Sahrim Ahmad ◽  
Ruey Shan Chen ◽  
Farrah Diyana Zailan ◽  
Dalila Shahdan

Author(s):  
M.F.M. Alkbir ◽  
Fatihhi Januddi ◽  
Mohamad Asraf Bin Ariffin ◽  
M.S.E. Kosnan ◽  
Adnan Bakri ◽  
...  

2013 ◽  
Vol 365-366 ◽  
pp. 1086-1089
Author(s):  
Yuan Jen Chang ◽  
Bing Chiuan Shiu ◽  
Jia Horng Lin ◽  
Ching Wen Lou

This study aims to fabricate strong mechanical properties and electrical conduction woven fabric, which provides flexible and strength for application. Polyethylene Terephthalate fiber (PET fiber) having fine mechanical properties are widely used in industry, as well as metal fiber are often used on electromagnetic shielding and static electricity protection. This study took both advantages of PET fiber and metal fiber for water sensitive functional textile. The result showed that warp yarns has a tensile strength of 1363.3N/mm and weft yarns has a tensile strength of 1483.3N/mm. In addition, both textiles with 20 wt% water absorption can be electrical conduction. Various metal yarns have different electrical resistivity and conductivity with various water absorption percentage.


Sign in / Sign up

Export Citation Format

Share Document