A low leakage 10 000‐V silicon photoconductive switch

1984 ◽  
Vol 45 (10) ◽  
pp. 1130-1131 ◽  
Author(s):  
Jackson C. Koo ◽  
Glen M. McWright ◽  
Michael D. Pocha ◽  
Russel B. Wilcox
Author(s):  
Ian Kearney ◽  
Hank Sung

Abstract Low voltage power MOSFETs often integrate voltage spike protection and gate oxide ESD protection. The basic concept of complete-static protection for the power MOSFETs is the prevention of static build-up where possible and the quick, reliable removal of existing charges. The power MOSFET gate is equivalent to a low voltage low leakage capacitor. The capacitor plates are formed primarily by the silicon gate and source metallization. The capacitor dielectric is the silicon oxide gate insulation. Smaller devices have less capacitance and require less charge per volt and are therefore more susceptible to ESD than larger MOSFETs. A FemtoFETTM is an ultra-small, low on-resistance MOSFET transistor for space-constrained handheld applications, such as smartphones and tablets. An ESD event, for example, between a fingertip and the communication-port connectors of a cell phone or tablet may cause permanent system damage. Through electrical characterization and global isolation by active photon emission, the authors identify and distinguish ESD failures. Thermographic analysis provided additional insight enabling further separation of ESD failmodes. This paper emphasizes the role of failure analysis in new product development from the create phase through to product ramp. Coupled with device electrical simulation, the analysis observations led to further design enhancement.


2000 ◽  
Vol 42 (7-8) ◽  
pp. 283-290 ◽  
Author(s):  
H.-C. Tsai ◽  
R.-A. Doong

A sol-gel based fiber-optic biosensor with acetylcholinesterase as the biorecognition element has been developed for the rapid determination of organophosphorus pesticides. Nine fluorescent indicators, acridine, acridine orange, neutral red, DAPI, rhodamine B, fluorescein, umbelliferone, FITC on celite and FITC-dextran, have been examined to optimize the fiber-optic system. Results showed that acridine and FITCs were sensitive to the change of pH value caused by the enzyme-substrate catalysis reaction. However, the sensitivity of acridine was 260 times lower than that of FITCs. Higher toxicity of acridine to acetylcholinesterase than FITC was also observed. Moreover, the high-molecular-weight FITC-dextran showed low leakage rate when immobilizing using sol-gel technology, showing that the FITC-dextran was a suitable pH sensitive fluorescent indicator for the OPPs biosensor. The response of the fiber-optic biosensor to the substrate, acetylcholine, was highly reproducible (RSD=3.5%). A good linearity of acetylcholine in the range from 0.5 to 20 mM was also obtained (R2=0.98). Furthermore, a 30% inhibition can be achieved in 30min when 152 ppb paraoxon was added into the system. The results show the possibility for real-time determination of organophosphorus pesticides by using the biosensor developed in this study.


2021 ◽  
Vol 285 ◽  
pp. 129120
Author(s):  
Wenxin Liang ◽  
Hongfeng Zhao ◽  
Xiaoji Meng ◽  
Shaohua Fan ◽  
Qingyun Xie

2010 ◽  
Vol 19 (07) ◽  
pp. 1449-1464 ◽  
Author(s):  
BYUNGHEE CHOI ◽  
YOUNGSOO SHIN

A reduced supply voltage must be accompanied by a reduced threshold voltage, which makes this approach to power saving susceptible to process variation in transistor parameters, as well as resulting in increased subthreshold leakage. While adaptive body biasing is efficient for both compensating process variation and suppressing leakage current, it suffers from a large overhead of control circuit. Most body biasing circuits target an entire chip, which causes excessive leakage of some blocks and misses the chance of fine grain control. We propose a new adaptive body biasing scheme, based on a lookup table for independent control of multiple functional blocks on a chip, which controls leakage and also compensates for process variation at the block level. An adaptive body bias is applied to blocks in active mode and a large reverse body bias is applied to blocks in standby mode. This is achieved by a central body bias controller, which has a low overhead in terms of area, delay, and power consumption. The problem of optimizing the required set of bias voltages is formulated and solved. A design methodology for semicustom design using standard-cell elements is developed and verified with benchmark circuits.


2021 ◽  
Vol 85 ◽  
pp. 104281
Author(s):  
Monica Gupta ◽  
Kirti Gupta ◽  
Neeta Pandey

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2932
Author(s):  
Stergios Tsigaridas ◽  
Silvia Zanettini ◽  
Manuele Bettelli ◽  
Nicola Sarzi Amadè ◽  
Davide Calestani ◽  
...  

Over the past few years, sensors made from high-Z compound semiconductors have attracted quite some attention for use in applications which require the direct detection of X-rays in the energy range 30–100 keV. One of the candidate materials with promising properties is cadmium zinc telluride (CdZnTe). In the context of this article, we have developed pixelated sensors from CdZnTe crystals grown by Boron oxide encapsulated vertical Bridgman technique. We demonstrate the successful fabrication of CdZnTe pixel sensors with a fine pitch of 55 m and thickness of 1 mm and 2 mm. The sensors were bonded on Timepix readout chips to evaluate their response to X-rays provided by conventional sources. Despite the issues related to single-chip fabrication procedure, reasonable uniformity was achieved along with low leakage current values at room temperature. In addition, the sensors show stable performance over time at moderate incoming fluxes, below 106 photons mm−2s−1.


1999 ◽  
Vol 14 (11) ◽  
pp. 4395-4401 ◽  
Author(s):  
Seung-Hyun Kim ◽  
D. J. Kim ◽  
K. M. Lee ◽  
M. Park ◽  
A. I. Kingon ◽  
...  

Ferroelectric SrBi2Ta2O9 (SBT) thin films on Pt/ZrO2/SiO2/Si were successfully prepared by using an alkanolamine-modified chemical solution deposition method. It was observed that alkanolamine provided stability to the SBT solution by retarding the hydrolysis and condensation rates. The crystallinity and the microstructure of the SBT thin films improved with increasing annealing temperature and were strongly correlated with the ferroelectric properties of the SBT thin films. The films annealed at 800 °C exhibited low leakage current density, low voltage saturation, high remanent polarization, and good fatigue characteristics at least up to 1010 switching cycles, indicating favorable behavior for memory applications.


Sign in / Sign up

Export Citation Format

Share Document