scholarly journals Time‐resolved and space‐resolved Si lattice‐temperature measurements during cw laser annealing of Si on sapphire

1984 ◽  
Vol 45 (6) ◽  
pp. 659-661 ◽  
Author(s):  
Kouichi Murakami ◽  
Yoshinori Tohmiya ◽  
Kôki Takita ◽  
Kohzoh Masuda
1983 ◽  
Vol 23 ◽  
Author(s):  
Kouichi Murakami ◽  
Hisayoshi Itoh ◽  
Yoshinori Tohmiya ◽  
Kōoki Takita ◽  
Kohzoh Masuda

ABSTRACTTime-resolved Si lattice-temperature measurement has been developed on wide time scale from 10−9 to 100 sec during laser annealing, by utilizing the time-dependent optical interference in Si on sappire. This interference is due to small changes in Si refractive index induced by temporal changes in Si lattice-temperature. For ns–pulsed laser annealing, part of the absorbed photon energy is found to be transferred into lattice (phonons) in a time much shorter than 40-ns pulse duration. A new method using a microscope is demonstrated for time- and space-resolved Si latticetemperature measurements during cw laser annealing.


1982 ◽  
Vol 13 ◽  
Author(s):  
R. J. Nemanich ◽  
D. K. Biegelsen ◽  
W. G. Hawkins

ABSTRACTAligned, coexisting liquid and solid regions are observed in cw laser annealing of polycrystalline Si films on quartz substrates. These stripe patterns are the precursors of surface topography that exists after cooling. It is proposed that a similar situation exists in the pulse annealing process. A calculation of the temperature evolution which assumes stripe symmetry and kinetic restraints of the crystallization process has been carried out. These calculations indicate a lattice temperature of between 1100 and 1300 K, 10 nsec after the sample has fully solidified.


Physica B+C ◽  
1983 ◽  
Vol 117-118 ◽  
pp. 1024-1026 ◽  
Author(s):  
Kouichi Murakami ◽  
Hisayoshi Itoh ◽  
Kōki Takita ◽  
Kohzoh Masuda

1993 ◽  
Vol 321 ◽  
Author(s):  
Gregory J. Exarhos ◽  
Nancy J. Hess

AbstractIsothermal annealing of amorphous TiO2 films deposited from acidic sol-gel precursor solutions results in film densification and concomitant increase in refractive index. Subsequent heating above 300°C leads to irreversible transformation to an anatase crystalline phase. Similar phenomena occur when such amorphous films are subjected to focused cw laser irradiation. Controlled variations in laser fluence are used to density or crystallize selected regions of the film. Low fluence conditioning leads to the evolution of a subtle nanograin-size morphology, evident in AFM images, which appears to retard subsequent film crystallization when such regions are subjected to higher laser fluence. Time-resolved Raman spectroscopy has been used to characterize irradiated regions in order to follow the crystallization kinetics, assess phase homogeneity, and evaluate accompanying changes in residual film stress.


1982 ◽  
Vol 17 (12) ◽  
pp. 783-786 ◽  
Author(s):  
D. Bensahel ◽  
G. Auvert ◽  
Y. Pauleau ◽  
J.C. Pfister
Keyword(s):  

1981 ◽  
Vol 4 ◽  
Author(s):  
G. Auvert ◽  
D. Bensahel ◽  
A. Perio ◽  
F. Morin ◽  
G.A. Rozgonyi ◽  
...  

ABSTRACTExplosive Crystallization occurs in cw laser annealing on a-Si films deposited on glass substrates at laser scan speeds higher than 30 cm/sec. Optical, structural and electrical properties of the crystallized films at various laser scan speeds confirm the existence of two kinds of explosive growth depending on the state of crystallinity of the starting material.


2019 ◽  
Vol 3 (2) ◽  
pp. 6
Author(s):  
Hartmut Borchert ◽  
Stefan Brieschenk ◽  
Berthold Sauerwein

1981 ◽  
Vol 4 ◽  
Author(s):  
B. C. Larson ◽  
C. W. White ◽  
T. S. Noggle ◽  
J. F. Barhorst ◽  
D. Mills

ABSTRACTSynchrotron x-ray pulses have been used to make nanosecond resolution time-resolved x-ray diffraction measurements on silicon during pulsed laser annealing. Thermal expansion analysis of near-surface strains during annealing has provided depth dependent temperature profiles indicating >1100°C temperatures and diffraction from boron implanted silicon has shown evidence for near-surface melting. These results are in qualitative agreement with the thermal melting model of laser annealing.


1985 ◽  
Vol 28 (4) ◽  
pp. 339-344 ◽  
Author(s):  
S. Peterström ◽  
G. Holmén ◽  
G. Alestig

Sign in / Sign up

Export Citation Format

Share Document