Fabrication and static compression test of hybrid magnetorheological elastomer-fluid for vibration control application

2020 ◽  
Author(s):  
M. F. Jaafar ◽  
N. A. Ahmad ◽  
Z. I. Razali ◽  
A. F. Mohamad ◽  
M. A. I. Zulkiffli
2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110368
Author(s):  
Dong An ◽  
Jiaqi Song ◽  
Hailiang Xu ◽  
Jingzong Zhang ◽  
Yimin Song ◽  
...  

When the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied. It is found that the main factors affecting the fluctuation of force-displacement curve is the stiffness of concave side wall. The original tube is improved to constant resistance by changing the side wall. The friction coefficient affects the folding order and form of the energy absorbing device. Lifting the concave side wall stiffness can improve the overall stiffness of energy absorption device and slow down the falling section of force-displacement curve. It is always squeezed by adjacent convex side wall in the process of folding, with large plastic deformation. Compared with the original one, the improved prefolded tube designed in this paper can keep the maximum bearing capacity ( Pmax), increase the total energy absorption ( E), improve the specific energy absorption (SEA), and decrease the variance ( S2) of force-displacement curve.


2020 ◽  
Vol 20 (2) ◽  
pp. 101-109 ◽  
Author(s):  
Andrews Boakye ◽  
Rafui King Raji ◽  
Pibo Ma ◽  
Honglian Cong

AbstractThis research investigates the compressive property of a novel composite based on a weft-knitted auxetic tube subjected to a quasi-static compression test. In order to maximize the influence of the fiber content on the compression test, a Kevlar yarn was used in knitting the tubular samples using three different auxetic arrow-head structures (i.e. 4 × 4, 6 × 6 and 8 × 8 structure). A quasi-static compression test was conducted under two different impact loading speeds (i.e. 5 mm/min and 15 mm/min loading speed). The results indicate that the energy absorption (EA) property of the auxetic composite is highly influenced by the auxeticity of the knitted tubular fabric.


Algorithms ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 195
Author(s):  
Shiping Zhao ◽  
Yong Ma ◽  
Dingxin Leng

Recently, magnetorheological elastomer (MRE) has been paid increasingly attention for vibration mitigation devices with the benefits of low power cost, fail safe performances, and fast responses. To make full use of the striking advantages of MRE device, a highly precise model should be developed to predict its dynamic performances. In the work, an MRE isolator in shear–squeeze mixed mode is developed and tested under dynamic loadings. The nonlinear performances in various displacement amplitude and currents are shown. An artificial neural network model with a back-propagation algorithm is proposed to characterize the nonlinear hysteresis of MRE isolator for its implementation in vibration control applications. This model utilized the displacement, velocity, and applied current as inputs and output force as output. The results show that the proposed model has high modeling accuracy and can well portray the complicated behaviors of MRE isolator with different excitations, which shows a fundamental basis for structural vibration control.


Author(s):  
Souta Kimura ◽  
Toshihiko Mochida ◽  
Takeshi Kawasaki ◽  
Hideyuki Nakamura ◽  
Takashi Yamaguchi

The energy absorption of a crashworthy structure for railway’s rolling stock was studied experimentally and numerically. A quasi-static compression test was conducted using a full-scale mockup of a crashworthy structure constructed with welded aluminum alloys. To predict the experimental results, a finite element (FE) simulation was conducted in which the Gurson-Tvergaard-Needleman (GTN) model, representing the accumulation of ductile fractures by the nucleation, growth and coalescence of micro-voids, was employed as the constitutive equations of the parent aluminum alloys and welded regions. A simulation employing the Von-Mises yielding model as the constitutive equations was performed as a conventional approach to demonstrate the advantages of the simulation using the GTN model in predicting the energy absorbing ability. The predictions of the GTN model simulation were proved to be in better agreement with the experimental data than those of the simulation based on the Von-Mises model. The relationship between the total energy absorption and the local phenomena observed in the compression test is discussed.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2435
Author(s):  
Yanliang Qiao ◽  
Jiangtao Zhang ◽  
Mei Zhang ◽  
Lisheng Liu ◽  
Pengcheng Zhai

A new magneto-hyperelastic model was developed to describe the quasi-static compression behavior of silicone rubber-based isotropic magnetorheological elastomer (MRE) in this work. The magnetization property of MRE was characterized by a vibrating sample magnetometer (VSM), and the quasi-static compression property under different magnetic fields was tested by using a universal testing machine equipped with a magnetic field accessory. Experimental results suggested that the stiffness of the isotropic MRE increased with the magnetic flux density within the tested range. Based on experimental results, a new magneto-hyperelastic model was established by coupling the Ogden hyperelastic model, the magnetization model and the magneto-induced modulus model based on a magnetic dipole theory. The results show that the proposed new model can accurately predict the quasi-static compression property of the isotropic MRE under the tested magnetic flux density and strain ranges using only three model parameters.


2019 ◽  
Vol 2019 (11) ◽  
pp. 19-27
Author(s):  
Dominik Nowakowski ◽  
Marta Baran ◽  
Janusz Lisiecki ◽  
Sylwester Kłysz ◽  
Piotr Synaszko

AbstractThe objective of the research presented in this paper was to determine the honeycomb core compliance of a sandwich structure of the horizontal stabilizer of the MiG-29 fighter jet in the static compression test. The study of the specimen was conducted based on the ASTM C365/C365M standard. The article presents the results of experimentally determined dependencies and strength parameters, i.e. the force-displacement dependence, the compressive modulus and the honeycomb core deformations.


2014 ◽  
Vol 577 ◽  
pp. 66-70
Author(s):  
Jin Sheng He ◽  
She Liang Wang ◽  
Guang Yaun Weng

In order to effectively use Magnetically Controlled Shape Memory Alloy (MSMA) for vibration control in civil engineering structure, the deformation mechanism and dynamic characteristics of the MSMA were studied; research methods apply to the constitutive relation of vibration control in civil engineering structure is given. Based on the study about MSMA vibration controller and its application in structural vibration control in engineering, MSMA in structure vibration control application prospect and development direction are introduced. At the same time, for the difficulties existing in the application are discussed in this paper. The results prove that MSMA materials in structural vibration control are of important value.


2012 ◽  
Vol 23 (9) ◽  
pp. 1041-1048 ◽  
Author(s):  
Weihua Li ◽  
Xianzhou Zhang ◽  
Haiping Du

Driver fatigue is one of the leading factors contributing to road crashes. Environmental stress, such as unwanted seat vibration, is a key contributor to fatigue. This article presents the design and development of a magnetorheological elastomer isolator for a seat suspension system. By altering the magnetorheological elastomer isolator’s stiffness through a controllable magnetic field and selecting suitable control strategy, the system’s natural frequency can be changed to avoid resonance, which consequently reduce the vehicle’s vibration energy input to seat, and thus suppress the seat’s response. Experimental results show that the developed magnetorheological elastomer isolator is able to reduce vibration more when compared with the passive isolation system, indicating the significant potential of its application in vehicle seat vibration control.


Sign in / Sign up

Export Citation Format

Share Document