Simulation of gait cycle in sagittal plane for above-knee prosthesis

2022 ◽  
Author(s):  
Saif M. J. Haider ◽  
Ayad M. Takhakh ◽  
Muhannad Al-Waily ◽  
Yasir Saadi
Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 36
Author(s):  
Matúš Ranuša ◽  
Markus A. Wimmer ◽  
Spencer Fullam ◽  
Martin Vrbka ◽  
Ivan Křupka

Total knee arthroplasty is on the rise worldwide. Despite its success, revision surgeries are also increasing. According to the American Joint Replacement Registry 2020, 3.3% of revision surgeries are due to wear, and 24.2% are due to mechanical loosening. The combination of shear stresses and wear particles occurring at the bone/implant interface can lead to local osteolysis. Although the shear stresses are partially driven by joint friction, relatively little is known about the evolution of the coefficient of friction (CoF) during a gait cycle in total knee replacement. Here we describe the CoF during a gait cycle and investigate its association with kinematics (slide–roll-ratio), applied load, and relative velocity. The artificial knee was simulated by cobalt–chromium condyle on a flat ultra-high-molecular-weight polyethylene (UHMWPE) tibial plateau, lubricated by either water or proteinaceous solution. We found that the CoF is not a constant but fluctuates between the values close to 0 and 0.15. Cross-correlation suggested that this is primarily an effect of the slide–roll ratio and the contact pressure. There was no difference in the CoF between water and proteinaceous solution. Knowledge about the CoF behavior during a gait cycle will help to increase the accuracy of future computational models of total knee replacement.


Author(s):  
Rafhael Milanezi de Andrade ◽  
Jordana Simões Ribeiro Martins ◽  
Marcos Pinotti ◽  
Antônio Bento Filho ◽  
Claysson Bruno Santos Vimieiro

This study analyses the energy consumption of an active magnetorheological knee (AMRK) actuator that was designed for transfemoral prostheses. The system was developed as an operational motor unit (MU), which consists of an EC motor, a harmonic drive and a magnetorheological (MR) clutch, that operates in parallel with an MR brake. The dynamic models of the MR brake and MU were used to simulate the system’s energetic expenditure during over-ground walking under three different working conditions: using the complete AMRK; using just its motor-reducer, to operate as a common active knee prosthesis (CAKP), and using just the MR brake, to operate as a common semi-active knee prosthesis (CSAKP). The results are used to compare the MR devices power consumptions with that of the motor-reducer. As previously hypothesized, to use the MR brake in the swing phase is more energetically efficient than using the motor-reducer to drive the joint. Even if using the motor-reducer in regenerative braking mode during the stance phase, the differences in power consumption among the systems are remarkable. The AMRK expended 16.3 J during a gait cycle, which was 1.6 times less than the energy expenditure of the CAKP (26.6 J), whereas the CSAKP required just 6.0 J.


2014 ◽  
Vol 30 (2) ◽  
pp. 348-352 ◽  
Author(s):  
André G. P. Andrade ◽  
Janaine C. Polese ◽  
Leopoldo A. Paolucci ◽  
Hans-Joachim K. Menzel ◽  
Luci F. Teixeira-Salmela

Lower extremity kinetic data during walking of 12 people with chronic poststroke were reanalyzed, using functional analysis of variance (FANOVA). To perform the FANOVA, the whole curve is represented by a mathematical function, which spans the whole gait cycle and avoids the need to identify isolated points, as required for traditional parametric analyses of variance (ANOVA). The power variables at the ankle, knee, and hip joints, in the sagittal plane, were compared between two conditions: With and without walking sticks at comfortable and fast speeds. For the ankle joint, FANOVA demonstrated increases in plantar flexion power generation during 60–80% of the gait cycle between fast and comfortable speeds with the use of walking sticks. For the knee joint, the use of walking sticks resulted in increases in the knee extension power generation during 10–30% of the gait cycle. During both speeds, the use of walking sticks resulted in increased power generation by the hip extensors and flexors during 10–30% and 40–70% of the gait cycle, respectively. These findings demonstrated the benefits of applying the FANOVA approach to improve the knowledge regarding the effects of walking sticks on gait biomechanics and encourage its use within other clinical contexts.


Author(s):  
Jesús Franco-Robles ◽  
Alejandro De Lucio-Rangel ◽  
Karla A. Camarillo-Gómez ◽  
Gerardo I. Pérez-Soto ◽  
Jesús Rivera-Guillén

In this paper, a neuronal system with the ability to generate motion profiles and profiles of the ZMP in a 6DoF bipedal robot in the sagittal plane, is presented. The input time series for LSM training are movement profiles of the oscillating foot trajectory obtained by forward kinematics performed by a previously trained ANN multilayer perceptron. The profiles of objective movement for training are acquired from the analysis of the human walk. Based on a previous simulation of the bipedal robot, a profile of the objective ZMP will be generated for the y–axis and another for the z–axis to know its behavior during the training walk. As an experimental result, the LSM generates new motion profiles and ZMP, given a different trajectory with which it was trained. With the LSM it will be possible to propose new trajectories of the oscillating foot, where it will be known if this trajectory will be stable, by the ZMP, and what movement profile for each articulation will be required to reach this trajectory.


Author(s):  
Derek J. Lura ◽  
M. Jason Highsmith ◽  
Stephanie L. Carey ◽  
Rajiv V. Dubey

Advanced prostheses are currently being sold in consumer markets. The development of these advanced prostheses is largely a result of a better understanding of the biomechanics of human locomotion [1]. Powered and microprocessor controlled prostheses are offering better performance in a variety of movements and in the gait cycle. However the focus in lower limb prosthetics has been largely on locomotion (e.g. walking, stair gait and running). This study focuses on the sit and stand cycles of an individual with an Otto Bock C-leg and an Ossur Power Knee prosthesis, comparing his ability to utilize each prosthesis and comparing his cycle to that of a healthy (non-amputee) control subject. This study is part of a larger ongoing study of the sit and stand cycles seen in a large population of unilateral transfemoral prosthetic users of various kinds. The purpose of this study is to compare the difference in method of standing, and assistance provided by the prosthesis. With the knowledge gained from this study we hope to better understand the biomechanics of the sit and stand cycles, leading to better prostheses in the future.


1979 ◽  
Vol 3 (1) ◽  
pp. 4-12 ◽  
Author(s):  
J. Hughes ◽  
N. Jacobs

A study of normal locomotion requires an understanding of both the movements and the force actions involved. This is equally true in appreciating the problems of pathological gait. The gait cycle is described in terms of the significant events which occur during both the stance and swing phases. The basic principles underlying the analysis of force actions in walking are briefly described. A simple example of force actions in the elbow joint is considered and the analysis extrapolated to provide a general statement regarding locomotion. This relates to the muscle actions required to resist turning actions at joints due to the force effects in walking and the corresponding forces in the joints themselves. The conventional display of information relating to joint actions is considered and compared with the actual situation. “Stick diagrams” of motion in the sagittal plane are used to identify and discuss the actions at the joints of the leg in walking. Comparisons are made between this and pathological gait—in particular that of the above-knee amputee.


2014 ◽  
Vol 49 (3) ◽  
pp. 322-330 ◽  
Author(s):  
Lisa Chinn ◽  
Jay Dicharry ◽  
Joseph M. Hart ◽  
Susan Saliba ◽  
Robert Wilder ◽  
...  

Context: Chronic ankle instability is characterized by repetitive lateral ankle sprains. Prophylactic ankle taping is a common intervention used to reduce the risk of ankle sprains. However, little research has been conducted to evaluate the effect ankle taping has on gait kinematics. Objective: To investigate the effect of taping on ankle and knee kinematics during walking and jogging in participants with chronic ankle instability. Design: Controlled laboratory study. Setting: Motion analysis laboratory. Patients or Participants: A total of 15 individuals (8 men, 7 women; age = 26.9 ± 6.8 years, height = 171.7 ± 6.3 cm, mass = 73.5 ± 10.7 kg) with self-reported chronic ankle instability volunteered. They had an average of 5.3 ± 3.1 incidences of ankle sprain. Intervention(s): Participants walked and jogged in shoes on a treadmill while untaped and taped. The tape technique was a traditional preventive taping procedure. Conditions were randomized. Main Outcome Measure(s): Frontal-plane and sagittal-plane ankle and sagittal-plane knee kinematics were recorded throughout the entire gait cycle. Group means and 90% confidence intervals were calculated, plotted, and inspected for percentages of the gait cycle in which the confidence intervals did not overlap. Results: During walking, participants were less plantar flexed from 64% to 69% of the gait cycle (mean difference = 5.73° ± 0.54°) and less inverted from 51% to 61% (mean difference = 4.34° ± 0.65°) and 76% to 81% (mean difference = 5.55° ± 0.54°) of the gait cycle when taped. During jogging, participants were less dorsiflexed from 12% to 21% (mean difference = 4.91° ± 0.18°) and less inverted from 47% to 58% (mean difference = 6.52° ± 0.12°) of the gait cycle when taped. No sagittal-plane knee kinematic differences were found. Conclusions: In those with chronic ankle instability, taping resulted in a more neutral ankle position during walking and jogging in shoes on a treadmill. This change in foot positioning and the mechanical properties of the tape may explain the protective aspect of taping in preventing lateral ankle sprains.


2012 ◽  
Vol 9 (3) ◽  
pp. 303-316 ◽  
Author(s):  
M. S. Huq ◽  
M. O. Tokhi

Spring brake orthosis (SBO) concentrates purely on the knee to generate the swing phase of the paraplegic gait with the required hip flexion occurring passively as a consequence of the ipsilateral knee flexion, generated by releasing the torsion spring mounted at the knee joint. Electrical stimulation then drives the knee back to full extension, as well as restores the spring potential energy. In this paper, genetic algorithm (GA) and its variant multi-objective GA (MOGA) is used to perform the search operation for the ‘best’ spring parameters for the SBO spring mounted on an average sized subject simulated in the sagittal plane. Conventional torsion spring is tested against constant torque type spring in terms of swing duration as, based on first principles, it is hypothesized that constant torque spring would be able to produce slower SBO swing phase as might be preferred in assisted paraplegic gait. In line with the hypothesis, it is found that it is not possible to delay the occurrence of the flexion peak of the SBO swing phase further than its occurrence in the natural gait. The use of conventional torsion spring causes the swing knee flexion peak to appear rather faster than that of the natural gait, resulting in a potentially faster swing phase and hence gait cycle. The constant torque type spring on the other hand is able to stretch duration of the swing phase to some extent, rendering it the preferable spring type in SBO.


1979 ◽  
Vol 8 (4) ◽  
pp. 201-205 ◽  
Author(s):  
R J Minns ◽  
J Campbell

A ‘sliding meniscus’ knee prosthesis is proposed which includes design concepts as a consequence of biomechanical analyses undertaken. The biomechanical techniques included a range of movement study of the knee, knee force mechanics, mechanical testing, photoelastic studies and surface examination for loading and wear areas of the prosthetic components all of which led to a final design shape and size for a total knee joint replacement prosthesis. The prosthesis has a ‘polycentric’ femoral component which does not have to be precisely aligned in the femoral condyle; a tibial plateau which completely covers the cortex around the periphery of the tibia, horizontal alignment is necessary for this component; and four thicknesses of the sliding meniscus component which is congruent in the sagittal plane with the femoral component during load-bearing and flat on its lower surface for decreased wear and contact stress-levels.


2020 ◽  
Author(s):  
Slawomir Winiarski ◽  
Alicja Rutkowska-Kucharska ◽  
Mateusz Kowal

Abstract Background: Numerous studies have demonstrated significant asymmetries in unilateral amputee gait. The underlying dissimilarities between prosthetic and intact limbs have not yet been widely examined. To gain more insight into the functionality of asymmetries, we propose a new tool, the symmetry function (SF), to evaluate the symmetry of walking in terms of kinematic and dynamic variables of patients after unilateral transfemoral amputation and to identify areas with the largest side deviations in the movement cycle. Methods: An instrumented motion analysis system was used to register the gait of fourteen patients after unilateral trans-femoral amputation (TFA). Measurements involved evaluating the time series of gait variables characterizing a range of motion and the time series of the ground reaction force components. Comparison of the involved limb with the uninvolved limb in TFA patients was carried out on the basis of the SF values.Results: The symmetry function proved to be an excellent tool to localize the regions of asymmetry and their positive or negative directions in the full gait cycle. The difference between sides revealed by the symmetry function was the highest for the pelvis and the hip. In the sagittal plane, the pelvis was asymmetrically tilted, reaching the highest SF value of more than 25% at 60% cycle time. In the transverse plane, the pelvis was even more asymmetrically positioned throughout the entire gait cycle (50% difference on average). The hip in the frontal plane reached a 60% difference in SF throughout the single support phase for the prosthetic and then for the intact limb. Conclusions: The symmetry function allows for the detection of gait asymmetries and shifts in the center of gravity and may assess the precise in time adaptation of prostheses and rehabilitation monitoring, especially in unilateral impairments.Trial registration: The trial registration number (TRN): 379991 issued by the Australian New Zealand Clinical Trials Registry (ANZCTR) on 07.05.2020 (retrospectively registered).


Sign in / Sign up

Export Citation Format

Share Document