Symmetry function as a new tool for evaluating the symmetry of gait in transfemoral amputees

2020 ◽  
Author(s):  
Slawomir Winiarski ◽  
Alicja Rutkowska-Kucharska ◽  
Mateusz Kowal

Abstract Background: Numerous studies have demonstrated significant asymmetries in unilateral amputee gait. The underlying dissimilarities between prosthetic and intact limbs have not yet been widely examined. To gain more insight into the functionality of asymmetries, we propose a new tool, the symmetry function (SF), to evaluate the symmetry of walking in terms of kinematic and dynamic variables of patients after unilateral transfemoral amputation and to identify areas with the largest side deviations in the movement cycle. Methods: An instrumented motion analysis system was used to register the gait of fourteen patients after unilateral trans-femoral amputation (TFA). Measurements involved evaluating the time series of gait variables characterizing a range of motion and the time series of the ground reaction force components. Comparison of the involved limb with the uninvolved limb in TFA patients was carried out on the basis of the SF values.Results: The symmetry function proved to be an excellent tool to localize the regions of asymmetry and their positive or negative directions in the full gait cycle. The difference between sides revealed by the symmetry function was the highest for the pelvis and the hip. In the sagittal plane, the pelvis was asymmetrically tilted, reaching the highest SF value of more than 25% at 60% cycle time. In the transverse plane, the pelvis was even more asymmetrically positioned throughout the entire gait cycle (50% difference on average). The hip in the frontal plane reached a 60% difference in SF throughout the single support phase for the prosthetic and then for the intact limb. Conclusions: The symmetry function allows for the detection of gait asymmetries and shifts in the center of gravity and may assess the precise in time adaptation of prostheses and rehabilitation monitoring, especially in unilateral impairments.Trial registration: The trial registration number (TRN): 379991 issued by the Australian New Zealand Clinical Trials Registry (ANZCTR) on 07.05.2020 (retrospectively registered).

2020 ◽  
Vol 10 (5) ◽  
pp. 1171-1177
Author(s):  
Yuwei Liu ◽  
Feifei Chen ◽  
Gongju Liu ◽  
Zhiqiang Liang ◽  
Sergey Popik ◽  
...  

More and more people have known moxibustion as a traditional Chinese treatment technique. Moxibustion not only activate the immune system but also lessen sport tired effectively. The main goal of this study to investigate whether moxibustion alleviates the fatigue after the movement of the human body through biomechanics testing. The experiment recruited 6 young males as subjects, using moxibustion intervention after exercise-fatigue. The joint angle was obtained from Vicon motion analysis system, Kistler was used to measuring the GRF, jump height. In the sagittal plane, the peak angle of the hip, knee, ankle show significant differences between the intervention of moxibustion and no treatment during the take-off state. In the coronal plane, the main difference is represented in the landing state. In the transverse plane, both the take-off and landing state show the difference between the three conditions. The height of moxibustion intervention is significantly higher than baseline and no treatment; it may be indicated that the participants made a recovery well after the intervention of moxibustion. Nevertheless, the ground reaction force didn’t show significance. Overall, it can be concluded that moxibustion can have a direct effect on vertical jump performance during a fatigued state. Evidence from these results could perhaps suggest that moxibustion could be used as a preventative measure to reduce fatigue and enhance athlete performance.


Author(s):  
Jesús Franco-Robles ◽  
Alejandro De Lucio-Rangel ◽  
Karla A. Camarillo-Gómez ◽  
Gerardo I. Pérez-Soto ◽  
Jesús Rivera-Guillén

In this paper, a neuronal system with the ability to generate motion profiles and profiles of the ZMP in a 6DoF bipedal robot in the sagittal plane, is presented. The input time series for LSM training are movement profiles of the oscillating foot trajectory obtained by forward kinematics performed by a previously trained ANN multilayer perceptron. The profiles of objective movement for training are acquired from the analysis of the human walk. Based on a previous simulation of the bipedal robot, a profile of the objective ZMP will be generated for the y–axis and another for the z–axis to know its behavior during the training walk. As an experimental result, the LSM generates new motion profiles and ZMP, given a different trajectory with which it was trained. With the LSM it will be possible to propose new trajectories of the oscillating foot, where it will be known if this trajectory will be stable, by the ZMP, and what movement profile for each articulation will be required to reach this trajectory.


2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Kateřina Kolářová ◽  
Tomáš Vodička ◽  
Michal Bozděch ◽  
Martin Repko

Purpose: The purpose of the study was to describe changes in the kinematic parameters in the patients’ gait after total hip replacement. Methods: Research group of men in the end stage of osteoarthritis indicated to the THR (n = 10; age 54.1 ± 7.5 years; weight 92.2 ± 9.6 kg; height 179.7 ± 5.9 cm). All participants underwent a total of three measurements: before surgery, 3 and 6 months after the surgery. Using the 3D kinematic analysis system, the patients’ gait was recorded during each measurement session and kinematic analysis was carried out. The parameters that were monitored included the sagittal range of motion while walking in the ankle, the knee and the hip joints of the operated and the unoperated limb, and the range in the hip joint’s frontal plane, the rotation of pelvis in the frontal and transverse planes, as well as the speed of walking and the walking step length. Results: Significant increases were found in sagittal range of motion in the operated hip joint, sagittal range of motion in the ankle joint on the unoperated side and in the walking step length of the unoperated limb. Conclusions: During walking after a THR, the sagittal range of motion in the ankle of the unoperated limb increases. Also, the range of motion in the sagittal plane on the operated joint increases, which is related to the lengthening of the step of the unoperated lower limb.


2020 ◽  
Vol 398 ◽  
pp. 34-40 ◽  
Author(s):  
Fahad Mohanad Kadhim ◽  
Jumaa Salman Chiad ◽  
Maryam Abdul Salam Enad

Four prosthetic knee joints (polycentric knee weight activating-4bar and friction, extension assist controlled),(single axis knee weight activating and friction, internal extension assist controlled), (single axis knee weight activating-4bar and hydraulically, controlled) and (polycentric knee geometric locking-6bar, hydraulically controlled) for a trans-femoral patient were tested. The tests were conducted to find the maximum velocity as well as discussing the most comfortable prosthetic forthe patient and walking stability for these prosthetic knees by examining the gait cycle and measuring the ground reaction force (GRF), using force a plate device. Also, the interface pressure was measured between socket and stump muscles by using F-socket device to get the stress distribution during walking with a prosthetic knee. Results manifested that the polycentric knee geometric locking - 6bar, hydraulically controlled is the best because of the good homogenous distribution of GRF between the healthy and prosthetic limb, during which the difference between both the healthy and prosthetic limb is with the least value (4%).And, K4 gives the minimum value of differences in contact pressure between the left and right limb with a value of (24%), it alsoimparts the maximum symmetry between the left and right limb according to the gait cycle parameters.The best results of the interface pressures and kinovea velocity are achieved whenK4 is used with (132.4KPa, 0.71m/s), respectively. Finally, the polycentric knee geometric locking - 6bar, hydraulically controlled is the best according to the ANSYS results during which it yields the minimum values of Von-Mises stress with 14.24MPa and a maximum factor of safety of 3.11.


2015 ◽  
Vol 47 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Jonathan Sinclair ◽  
Stephen Atkins ◽  
Jim Richards ◽  
Hayley Vincent

Abstract Research interest in barefoot running has expanded considerably in recent years, based around the notion that running without shoes is associated with a reduced incidence of chronic injuries. The aim of the current investigation was to examine the differences in the forces produced by different skeletal muscles during barefoot and shod running. Fifteen male participants ran at 4.0 m·s-1 (± 5%). Kinematics were measured using an eight camera motion analysis system alongside ground reaction force parameters. Differences in sagittal plane kinematics and muscle forces between footwear conditions were examined using repeated measures or Freidman’s ANOVA. The kinematic analysis showed that the shod condition was associated with significantly more hip flexion, whilst barefoot running was linked with significantly more flexion at the knee and plantarflexion at the ankle. The examination of muscle kinetics indicated that peak forces from Rectus femoris, Vastus medialis, Vastus lateralis, Tibialis anterior were significantly larger in the shod condition whereas Gastrocnemius forces were significantly larger during barefoot running. These observations provide further insight into the mechanical alterations that runners make when running without shoes. Such findings may also deliver important information to runners regarding their susceptibility to chronic injuries in different footwear conditions.


Author(s):  
Luke Chowning ◽  
John Krzyszkowski ◽  
Brandon Nunley ◽  
Ryan Lanier ◽  
Isabella Gonzales ◽  
...  

The execution strategy of technical dance movements is constrained by aesthetic and qualitative artistic requirements. As such, there are limited leap-landing strategies that may be used by dancers when executing a grand jeté or saut de chat. The purpose of this study was to determine potential differences in lower extremity angular positioning and joint loading when performing a dance-style leap landing. Fifteen female dancers (age: 20 ± 1 years; height: 1.61 ± 0.13 m; weight: 58.00 ± 11.89 kg) completed six leap-landing trials during which three-dimensional kinematics and kinetics data were collected. Paired-samples t-tests (α = 0.05) and Cohen’s d effect sizes (ES; large ≥ 0.8) were used to compare the following variables: jump height; peak vertical ground reaction force; loading time; loading rate; joint angular positioning of the ankle, knee, hip, and trunk in the frontal and sagittal planes; and joint angular impulse of the ankle, knee, and hip in the frontal and sagittal planes between the dominant and non-dominant limbs. Frontal plane hip angular impulse was significantly greater in the dominant limb (p = 0.023, ES = 1.53). While no other statistically significant differences were observed between dominant and non-dominant limbs, moderate effect sizes were observed for the hip and trunk angles in the frontal plane along with hip impulse in the sagittal plane. This study indicates that dancers might slightly alter their landing strategy at the hip joint when leap-landing onto the dominant limb. Frontal plane hip mechanics should be considered to minimize overuse injury potential in the dominant limb.


2016 ◽  
Vol 31 (4) ◽  
pp. 211-217 ◽  
Author(s):  
Danielle N Jarvis ◽  
Kornelia Kulig

In dance, high demands are placed on the lower extremity joints during jumping tasks. The purpose of this study was to compare biomechanical demands placed on the lower extremity joints during the takeoff and landing phases of saut de chat leaps. METHODS: Thirty healthy, experienced dancers with 20.8±4.9 yrs of dance training performed 5 saut de chat leaps. A three-dimensional motion analysis system and force plates were used to collect kinematic and kinetic data. Ground reaction force (GRF) peaks and impulse and sagittal plane kinematics and kinetics of the hip, knee, ankle, and metatarsophalangeal (MTP) joints were calculated for the takeoff and landing phases of each leap. RESULTS: Saut de chat takeoffs demonstrated greater braking GRF impulse (p<0.001), while landings demonstrated greater peak vertical GRF (p<0.001). During takeoff, greater kinetic demands were placed on the MTP (p<0.001) and ankle (p<0.001) joints, while during landing greater kinetic demands were placed on the hip (p=0.037) joint. CONCLUSIONS: Both the takeoff and landing phases of saut de chat leaps place significant demands on a dancer’s body. Takeoff involves greater demands on the more distal joints and requires more braking forces, while the landing phase involves greater demands on the more proximal joints of the lower extremity and requires the dancer to absorb more vertical force. These demands, combined with extensive repetition of movements during training, may contribute to the high number of chronic injuries seen in dance.


2010 ◽  
Vol 34 (2) ◽  
pp. 184-194 ◽  
Author(s):  
Inger-Marie Starholm ◽  
Terje Gjovaag ◽  
Anne Marit Mengshoel

Transfemoral amputees often report that walking on tilted pavements or on terrain with the prosthesis on the side of higher elevation is quite strenuous. This study investigates the energy expenditure of transfemoral amputees ( n = 8) on a motorized treadmill, simulating different strenuous outdoor walking conditions. Oxygen uptake at self-selected speed of gait was measured during walking at three different treadmill positions: (i) Horizontal treadmill, (ii) 3% tilt in the sagittal plane and (iii) 3% tilt in both the sagittal and frontal plane of the treadmill. The difference in median values of oxygen uptake between position (i) and (ii) was 4.3%, and 16.4% between position (ii) and (iii) ( p ≤ 0.05, for both comparisons). The subjects utilized about 50% of their VO2max when walking in position (i) and (ii), with an increase to about 60% of their VO2max when walking in position (iii). Transfemoral amputees use significantly more energy when walking on a moderately tilted surface in the frontal plane compared to walking with a tilt in the sagittal plane. This is probably because the prosthetic leg becomes functionally too long when the walking surface is tilted sideways, and the transfemoral amputees adopt a more energy consuming gait pattern.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 597
Author(s):  
Ae-Ryeong Kim ◽  
Ju-Hyun Park ◽  
Si-Hyun Kim ◽  
Kwang Bok Kim ◽  
Kyue-Nam Park

The present study was performed to investigate the validity of a wireless earbud-type inertial measurement unit (Ear-IMU) sensor used to estimate head angle during four workouts. In addition, relationships between head angle obtained from the Ear-IMU sensor and the angles of other joints determined with a 3D motion analysis system were investigated. The study population consisted of 20 active volunteers. The Ear-IMU sensor measured the head angle, while a 3D motion analysis system simultaneously measured the angles of the head, trunk, pelvis, hips, and knees during workouts. Comparison with the head angle measured using the 3D motion analysis system indicated that the validity of the Ear-IMU sensor was very strong or moderate in the sagittal and frontal planes. In addition, the trunk angle in the frontal plane showed a fair correlation with the head angle determined with the Ear-IMU sensor during a single-leg squat, reverse lunge, and standing hip abduction; the correlation was poor in the sagittal plane. Our results indicated that the Ear-IMU sensor can be used to directly estimate head motion and indirectly estimate trunk motion.


2019 ◽  
Vol 67 (1) ◽  
pp. 85-100
Author(s):  
Andrew W. Smith ◽  
Del P. Wong

AbstractThe study purposes were to record the lower extremity sagittal and frontal joint moments and powers during gait initiation (GI); evaluate GI support moments in both planes; and analyze planar energy patterns in a group of 15 healthy, young adults. 3D motion and ground reaction force data were used to calculate support moments (SM) and joint moments and powers as well as center of mass (COM) kinematics. STEP1 had no visible SM. It appeared in STEP2 and, by STEP3, resembled that seen in steady-state gait. Joint moments demonstrated a similar development towards typical patterns over the three steps. Correlations of moment data between planes indicate that the frontal plane component of the SM acts to keep the COM centered. It is suggested that Winter’s 1980 SM definition be extended to include both a support (sagittal) component and a centering (frontal) component. Energy was calculated for individual bursts of joint powers in both planes and each step had characteristic patterns in each plane, with patterns resembling steady-state gait appearing in the third step. Test-retest reliability (ICC range: 0.796 – 0.945) was high with CV values in the sagittal plane (36.6 – 37.5%) being less variable than in the frontal plane (39.0 – 82.0%). COM kinematics revealed that acceleration peaked in STEP2 (ICC range: 0.950 – 0.980, CV < 20.0%). Data supported hypotheses regarding the dominance of the frontal plane power in STEP1, with substantial power coming from hip flexors. As well, powers in the sagittal plane were generally of larger magnitude than in the frontal plane.


Sign in / Sign up

Export Citation Format

Share Document