Theranostics of skin neoplasms based on luminescence diagnostics in combination with photodynamic therapy in the absorption band of porphyrin

2022 ◽  
Vol 52 (1) ◽  
pp. 56-62
Author(s):  
I P Shilov ◽  
A S Gorshkova ◽  
A V Ivanov ◽  
V D Rumyantseva ◽  
G L Danielyan ◽  
...  

Abstract We report the results of developing a technique for theranostics of skin neoplasms based on luminescence diagnostics in combination with photodynamic therapy (PDT) in the absorption band of porphyrin. It is shown that the therapeutic effect is achieved exclusively due to PDT, without the participation of the hyperthermia process, which occurs at temperatures above 42 °C. The Fluroscan gel [based on the dipotassium salt of the ytterbium complex of 2,4-di-(a-methoxyethyl)deuteroporphyrin IX (Yb-DMDP)] is used as a preparation for theranostics. The main photophysical properties and possible mechanisms of accumulation of nanosized low-toxic photosensitisers based on this compound are studied. It is shown that the Yb-DMDP compound in a DMSO solution (30% aqueous DMSO) enhances photophysical characteristics (luminescence lifetime 5-10 ms, luminescence quantum yield up to 1%, extinction coefficient ~1.96 × 105 M-1 cm-1 at a wavelength of 398 nm). Experimental animals are used to test the proposed technique for theranostics of tumours using the Fluroscan gel and a fibre-optic laser fluorimeter.

2001 ◽  
Vol 48 (1) ◽  
pp. 277-282 ◽  
Author(s):  
A Drzewiecka ◽  
K Urbańska ◽  
Z Matuszak ◽  
M Pineiro ◽  
L G Arnaut ◽  
...  

We report the synthesis, photochemical and photophysical properties and preliminary studies on biological effect of a new tritolylporphyrin dimer (T-D). Absorption and emission properties of T-D suggest its possible use in photodynamic therapy. T-D is capable of singlet oxygen production with 0.8 quantum yield. It also has a high photostability. The photodynamic properties of the dimer were examined following the growth of SKMEL 188 (human melanoma) cells irradiated with red light (cut off < 630 nm). The surviving fraction of the cells decreased about 3-fold (vs. non-irradiated cells) for an 81 J/cm dose. Our results suggest that tritolylporphyrine dimer T-D may be an interesting hydrophobic sensitizer for photodynamic therapy.


2017 ◽  
Vol 21 (01) ◽  
pp. 59-66 ◽  
Author(s):  
Lixin Zang ◽  
Huimin Zhao ◽  
Qicheng Fang ◽  
Ming Fan ◽  
Tong Chen ◽  
...  

Sinoporphyrin sodium (DVDMS) is a novel photosensitizer with high photodynamic therapy (PDT) effect. Reasons for its high photo-activity were investigated according to the study of photophysical characteristics of DVDMS. Extinction coefficients ([Formula: see text] of DVDMS at 405 nm and 630 nm are 4.36 × 105 and 1.84 × 104 M[Formula: see text].cm[Formula: see text]; fluorescence quantum yield ([Formula: see text] is 0.026; quantum yield of lowest triplet state formation is 0.94 and singlet oxygen quantum yield ([Formula: see text] is 0.92. Although [Formula: see text] of DVDMS is only 10% higher than that of Photofrin[Formula: see text] (0.83), the extinction coefficient of DVDMS at 630 nm is 10-fold greater than that of Photofrin[Formula: see text]. This leads to its higher singlet oxygen generation efficiency ([Formula: see text]. The higher [Formula: see text] of DVDMS can result in an effective reduction of dosage (1/10 of Photofrin[Formula: see text] reaching the same cytotoxic effect as Photofrin[Formula: see text]. Even though [Formula: see text] is approximately equal to that of Photofrin[Formula: see text], brightness ([Formula: see text] of DVDMS is 10-fold greater than that of Photofrin[Formula: see text] because of the 10-fold greater extinction coefficient. Thus, fluorescence diagnosis ability of 0.2 mg/kg DVDMS is comparable to that of 2 mg/kg Photofrin[Formula: see text] used in PDT. Overall, the 10-fold greater extinction coefficients are responsible for the high brightness and singlet oxygen generation efficiency of DVDMS.


Author(s):  
Yu Dong ◽  
Prashant Kumar ◽  
Partha Maity ◽  
Ivan Kurganskii ◽  
Shujing Li ◽  
...  

The photophysical properties of a heavy atom-free Bodipy derivative with twisted π-conjugation framework were studied. Efficient intersystem crossing (ISC. Quantum yield: 56%) and exceptionally long-lived triplet state wereobserved (4.5 ms....


2019 ◽  
Vol 26 (10) ◽  
pp. 758-767
Author(s):  
Vicente Rubio ◽  
Vijaya Iragavarapu ◽  
Maciej J. Stawikowski

Background: Herein we report the multigram-scale synthesis, characterization and application of a rhodamine B-based fluorophore (ROSA) suitable for fluorescent studies in biological applications. This fluorophore is devoid of rhodamine spirolactone formation and furthermore characterized by a high molar extinction coefficient (ϵ=87250 ± 1630 M-1cm-1) and quantum yield (φ) of 0.589 ± 0.070 in water. Reported here is also the application of ROSA towards synthesis of a ROSA-PEG-GRGDS-NH2 fluorescent probe suitable for live cell imaging of αvβ3 integrins for in vitro assays. Objective: The main objective of this study is to efficiently prepare rhodamine B derivative, devoid of spirolactone formation that would be suitable for bioconjugation and subsequent bioimaging. Methods: Rhodamine B was transformed into rhodamine B succinimide ester (RhoB-OSu) using N-hydroxysuccinimide. RhoB-OSu was further coupled to sarcosine to obtain rhodamine Bsarcosine dye (ROSA) in good yield. The ROSA dye was then coupled to a αvβ3 integrin binding sequence using standard solid-phase conditions. Resulting ROSA-PEG-GRGDS-NH2 probe was used to image integrins on cancer cells. Results: The rhodamine B-sarcosine dye (ROSA) was obtained in multigram scale in good total yield of 47%. Unlike rhodamine B, the ROSA dye does not undergo pH-dependent spirolactone/spirolactam formation as compared with rhodamine B-glycine. It is also characterized by excellent quantum yield (φ) of 0.589 ± 0.070 in water and high molar extinction coefficient of 87250 ± 1630 M-1cm-1. ROSA coupling to the RGD-like peptide was proved to be efficient and straightforward. Imaging using standard filters on multimode plate reader and confocal microscope was performed. The αvβ3 integrins present on the surface of live WM-266-4 (melanoma) and MCF- 7 (breast cancer) cells were successfully imaged. Conclusion: We successfully derivatized rhodamine B to create an inexpensive, stable and convenient to use fluorescent probe. The obtained derivative has excellent photochemical properties and it is suitable for bioconjugation and many imaging applications.


2021 ◽  
Author(s):  
Nan Zheng ◽  
Xiahui Li ◽  
Shangwei Huangfu ◽  
Kangkai Xia ◽  
Ruofei Yue ◽  
...  

A linear poly-porphyrin with high Mw and conjugated by PEG and acetazolamide was developed with enhanced singlet oxygen quantum yield, improved photo-toxicity and excellent in vivo photodynamic therapy.


Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 128 ◽  
Author(s):  
Rajkamal Balu ◽  
Robert Knott ◽  
Christopher M. Elvin ◽  
Anita J. Hill ◽  
Namita R. Choudhury ◽  
...  

Herein we report the first example of a facile biomineralization process to produce ultra-small-sized highly fluorescent aqueous dispersions of platinum noble metal quantum clusters (Pt-NMQCs) using a multi-stimulus responsive, biomimetic intrinsically disordered protein (IDP), Rec1-resilin. We demonstrate that Rec1-resilin acts concurrently as the host, reducing agent, and stabilizer of the blue-green fluorescent Pt-NMQCs once they are being formed. The photophysical properties, quantum yield, and fluorescence lifetime measurements of the synthesized Pt-NMQCs were examined using UV-Vis and fluorescence spectroscopy. The oxidation state of the Pt-NMQCs was quantitatively analyzed using X-ray photoelectron spectroscopy. Both a small angle X-ray scattering technique and a modeling approach have been attempted to present a detailed understanding of the structure and conformational dynamics of Rec1-resilin as an IDP during the formation of the Pt-NMQCs. It has been demonstrated that the green fluorescent Pt-NMQCs exhibit a high quantum yield of ~7.0% and a lifetime of ~9.5 ns in aqueous media. The change in photoluminescence properties due to the inter-dot interactions between proximal dots and aggregation of the Pt-NMQCs by evaporation was also measured spectroscopically and discussed.


2017 ◽  
Vol 41 (18) ◽  
pp. 9826-9839 ◽  
Author(s):  
Boddula Rajamouli ◽  
Rachna Devi ◽  
Abhijeet Mohanty ◽  
Venkata Krishnan ◽  
Sivakumar Vaidyanathan

The red light emitting diode (LED) was fabricated by using europium complexes with InGaN LED (395 nm) and shown digital images, corresponding CIE color coordinates (red region) as well as obtained highest quantum yield of the thin film (78.7%).


Sign in / Sign up

Export Citation Format

Share Document