Oil Spill Monitoring Handbook

Oil spills can be difficult to manage, with reporting frequently delayed. Too often, by the time responders arrive at the scene, the slick has moved, dissolved, dispersed or sunk. This Oil Spill Monitoring Handbook provides practical advice on what information is likely required following the accidental release of oil or other petroleum-based products into the marine environment. The book focuses on response phase monitoring for maritime spills, otherwise known as Type I or operational monitoring. Response phase monitoring tries to address the questions – what? where? when? how? how much? – that assist responders to find, track, predict and clean up spills, and to assess their efforts. Oil spills often occur in remote, sensitive and logistically difficult locations, often in adverse weather, and the oil can change character and location over time. An effective response requires robust information provided by monitoring, observation, sampling and science. The Oil Spill Monitoring Handbook completely updates the Australian Maritime Safety Authority’s 2003 edition of the same name, taking into account the latest scientific advances in physical, chemical and biological monitoring, many of which have evolved as a consequence of major oil spill disasters in the last decade. It includes sections on the chemical properties of oil, the toxicological impacts of oil exposure, and the impacts of oil exposure on different marine habitats with relevance to Australia and elsewhere. An overview is provided on how monitoring integrates with the oil spill response process, the response organisation, the use of decision-support tools such as net environmental benefit analysis, and some of the most commonly used response technologies. Throughout the text, examples are given of lessons learned from previous oil spill incidents and responses, both local and international. General guidance of spill monitoring approaches and technologies is augmented with in-depth discussion on both response phase and post-response phase monitoring design and delivery. Finally, a set of appendices delivers detailed standard operating procedures for practical observation, sample and data collection. The Oil Spill Monitoring Handbook is essential reading for scientists within the oil industry and environmental and government agencies; individuals with responder roles in industry and government; environmental and ecological monitoring agencies and consultants; and members of the maritime sector in Australia and abroad, including officers in ports, shipping and terminals.

2017 ◽  
Vol 2017 (1) ◽  
pp. 2791-2810
Author(s):  
Thomas Coolbaugh ◽  
Andy Nicoll ◽  
Aaron Montgomery ◽  
Geeva Varghese ◽  
Lucy Heathcote

ABSTRACT Within the oil spill response community, dispersant use is considered to be a key tool for the treatment and mitigation of oil spills. As a response technique, the benefits of dispersant application have been long proven, particularly in the case of large offshore spills such as those associated with the Sea Empress (UK, 1996), Montara (Australia, 2009) and Macondo (USA, 2010) incidents. Compared to other spill response techniques, dispersant application has less operational constraints associated with adverse weather conditions and can be rapidly applied from an aerial platform for larger spills far offshore. These reasons render dispersant application a critical tool in the toolbox for many offshore operators. Developing a successful dispersant application strategy requires comprehensive planning. For an offshore operator with a subsea well blowout risk, a number of elements should be carefully considered to ensure the successful execution of the dispersant application strategy. The decision making process should include a detailed evaluation of the oil type, release scenario and location, and the consideration of these parameters against the larger environmental and socio-economic needs of the stakeholder community. Once dispersant application is established to be a viable response option using a process such as Net Environmental Benefit Analysis (NEBA), the operator also needs to ensure that it is adequately resourced in terms of application platforms (vessel vs aircraft), monitoring techniques and supporting logistics. Well planned and detailed operational strategies are critical for successful subsea and surface dispersant operations, especially in the unlikely event of a large offshore spill. This paper summarizes the various operational considerations an offshore operator needs to assess during the preparedness stage for developing a viable dispersant application strategy. Drawing on the authors’ experiences in developing and implementing various preparedness projects globally, the different aspects of the dispersant planning process, including oil spill modelling to support decision making, ascertaining dispersant effectiveness for the oil type, selecting appropriate application techniques, establishing necessary logistical support and the setting up of an incident management team to support dispersant operations, will be discussed in detail. The goal of the paper is to build upon prior dispersant strategy discussions and provide an operationally focused blueprint for planning and implementing an effective dispersant application strategy in support of offshore operations.


1995 ◽  
Vol 35 (1) ◽  
pp. 830
Author(s):  
D.J. Blackmore

It is vital that there is a credible and well organised arrangement to deal with oil spills in Australia.The National Plan to Combat Pollution of the Sea by Oil, the umbrella oil spill response plan for Australia, is a combined effort by the Commonwealth and State Governments, the oil industry and the shipping industry.The Australian Marine Oil Spill Centre (AMOSC), formed in 1991, is an industry centre set up for rapid response with equipment and resources, together with a training and industry coordination role.A review of the National Plan in 1992, identified, amongst a number of issues, that the National Plan needed to be re-focussed, to ensure full integration of all government and industry activities for the first time. This has led to greatly improved understanding between government and industry and significant improvements to Australia's oil spill response preparedness. The National Plan review has also resulted in a clearer definition of the responsibilities for operational control, together with the organisational structure to deliver a successful response.The current state of Australia's National Plan is such that it does provide confidence that there is the capacity to deliver an effective response to oil spills in the marine environment. Nevertheless, there is more to be done, particularly in the areas of planning and exercises.


1993 ◽  
Vol 1993 (1) ◽  
pp. 695-697 ◽  
Author(s):  
Thomas A. Dean ◽  
Lyman McDonald ◽  
Michael S. Stekoll ◽  
Richard R. Rosenthal

ABSTRACT This paper examines alternative designs for the monitoring and assessment of damages of environmental impacts such as oil spills. The optimal design requires sampling at pairs of impacted (oiled) and control (unoiled) sites both before and after the event. However, this design proved impractical in evaluating impacts of the Exxon Valdez oil spill on nearshore subtidal communities, and may be impractical for future monitoring. An alternative design is discussed in which sampling is conducted at pairs of control and impact sites only after the impact.


2017 ◽  
Vol 2017 (1) ◽  
pp. 104-123
Author(s):  
Yvonne Najah Addassi ◽  
Julie Yamamoto ◽  
Thomas M. Cullen

ABSTRACT The Refugio Oil Spill occurred on May 19, 2015, due to the failure of an underground pipeline, owned and operated by a subsidiary of Plains All-American Pipeline near Highway 101 in Santa Barbara County. The Responsible Party initially estimated the amount of crude oil released at about 104,000 gallons, with 21,000 gallons reaching the ocean. A Unified Command (UC) was established consisting of Incident Commanders from the U.S. Coast Guard (USCG), California Department of Fish and Wildlife (CDFW) Office of Spill Prevention and Response (OSPR), Santa Barbara County, and Plains Pipeline with additional participation by the U.S. Environmental Protection Agency and California State Parks. Within hours, the CDFW closed fisheries and the following day Governor Brown declared a state of emergency for Santa Barbara County. The released oil caused heavy oiling of both on and offshore areas at Refugio State Beach and impacted other areas of Santa Barbara and Ventura. A number of factors created unique challenges for the management of this response. In addition to direct natural resource impacts, the closure of beaches and fisheries occurred days before the Memorial Day weekend resulting in losses for local businesses and lost opportunities for the public. The Santa Barbara community, with its history with oil spills and environmental activism, was extremely concerned and interested in involvement, including the use of volunteers on beaches. Also this area of the coast has significant tribal and archeologic resources that required sensitive handling and coordination. Finally, this area of California’s coast is a known natural seep area which created the need to distinguish spilled from ‘naturally occurring’ oil. Most emergency responses, including oil spills, follow a similar pattern of command establishment, response and cleanup phases, followed by non-response phase monitoring, cleanup and restoration. This paper will analyze the Refugio oil spill response in three primary focus areas: 1) identify the ways in which this spill response was unique and required innovative and novel solutions; 2) identify the ways in which this response benefited from the ‘lessons’ learned from both the Deepwater Horizon and Cosco Busan oil spills; and 3) provide a summary of OSPR’s response evaluation report for Refugio, with specific focus on how the lessons learned and best practices will inform future planning efforts within California.


2008 ◽  
Vol 2008 (1) ◽  
pp. 1219-1223 ◽  
Author(s):  
Ronald Cantin ◽  
Roger Laferriere ◽  
Larry Hewett ◽  
Charlie Henry

ABSTRACT Every nation faces the possibility of a major natural disaster and few plans are in place to deal with the massive consequences that follow. When Hurricane Katrina reached landfall, the human toll and extent of damage made it the worst natural disaster in American history. The news headlines were filled with the images of desperation and the efforts of the thousands of heroes across the spectrum of government who worked tirelessly to help the citizens of the Gulf Coast of the United States recover. Less visible to the American public was the vast environmental impact caused by millions of gallons of oil released by hundreds of individual oil spills. The total oil volume lost to the environment is estimated at over 8.2 million gallons, making it the second largest oil spill in United States history. Moreover, this spill was the first major environmental disaster managed under the newly published National Response Plan, a plan developed following the tragic events of the terrorist attacks of September 11, 2001. This paper will describe how response managers overcame the incredible challenges of managing multiple oil spills in an enormous area devoid of the support infrastructure, human resources and the logistics network normally present in major spills within the United States. The authors will offer a first hand account of the strategies employed by the response management system assembled to combat the spills. They will describe key lessons learned in overcoming competition for critical resources; the importance of combining scientific, legal and other support in determining response options such as burning and debris removal; and the methodology employed in creating a Unified Area Command that included multiple responsible parties. Finally, this paper will provide insights to processes within the Joint Field Office, an element of the National Response Plan, and how well it performed in supporting response efforts.


2017 ◽  
Vol 2017 (1) ◽  
pp. 2811-2825
Author(s):  
Claudia Caetano ◽  
Daniel White

ABSTRACT Abstract 2017-370. As a result of a successful modification to an Oil Spill Response Limited Boeing 727 aircraft (registration G-OSRA) to enable aerial dispersant spraying, a paper has been written, aiming to provide an insight into the introduction of a turbine aircraft dispersant-application platform and the implications of the evolution from turboprop to jet engine aircraft. Furthermore, Oil Spill Response Limited has recently commissioned and introduced a second aircraft of the same modification specification (registration G-OSRB). As a response technique, dispersant application can have a significant impact on tackling large quantities of oil at sea; however, much of its effectiveness relies on targeting the oil during the window of opportunity in which dispersant will work successfully, in the early stages of the weathering processes. Time is, therefore, a critical factor and it is this key aspect, as well as others explored in detail throughout the paper, that led to the development of a pioneering system, specifically designed to respond to oil spills, that will undoubtedly prove to have a positive impact in terms of response times to incident sites. The paper also presents the reasons supporting the choice of a Boeing 727-2S2F (RE) aircraft as the chosen platform for dispersant spraying operations, such as the power to weight ratio, cargo capacity, and rearward mounted engine positions, to name but a few. It is also important to analyse the benefits of the Boeing 727-2S2F (RE) and the dispersant spraying system it contains during the different stages of the incident life cycle, be it during the preparation phase or the response phase. In the preparation phase, one of the advantages to highlight is the resilience of having two aircraft operated under a back to back schedule of maintenance as envisioned by a maintenance program specially designed to ensure continuous operational availability. During the response phase, aircraft such as G-OSRA and G-OSRB benefit from reduced transit times to incident sites due to the higher speed through the air that is possible with jet aircraft. Also, the paper also compares some key performance indicators such as range and speed between the turboprop aircraft of choice, Hercules L-382 and the Boeing 727-2S2F (RE).


2003 ◽  
Vol 2003 (1) ◽  
pp. 909-911
Author(s):  
Declan O'Driscoll

ABSTRACT The issue of sustainable development is critical for the future prosperity of East Asia. The Region has seen rapid economic progress in recent years but at a cost to the environment. There is significant oil tanker traffic through the seas of East Asia as oil is transported from the Middle East to North Asia. In recent years, there have been a number of significant spills in the region. The oil industry has been active in establishing resources in the region, including East Asia Response Limited, to help with the response to oil spills. A GEF/UNDP/MO initiative PEMSEA (Partnerships in Environmental Management for the Seas of East Asia) has been developing and promoting strategies and action plans to ensure better environmental management in East Asia. This can be best achieved by building partnerships amongst all the concerned stakeholders, public and private, at local, national and regional levels. Strengthening the technical and management expertise in environmental issues, including oil spills, of local government officials within the region is a key element in ensuring long term sustainable development. The private sector can play a very useful role in helping to build this expertise. East Asia Response and PEMSEA have been collaborating closely to improve the oil spill response knowledge and expertise of local officials in the region. Delegates to jointly held training courses have come from Brunei, Cambodia, the People's Republic of China, Indonesia, Malaysia, Philippines, Thailand and Vietnam. The courses have allowed us a valuable opportunity to present to the delegates the oil industry's approach to oil spill response. Topics, such as the tiered response concept, contingency planning and net environmental benefit analysis have been well received. Delegates will now be better able to promote oil spill response preparedness and response capability in their home country, thereby, contributing to the sustained development of their economy.


1973 ◽  
Vol 1973 (1) ◽  
pp. 569-577
Author(s):  
Robert Kaiser ◽  
Donald Jones ◽  
Howard Lamp'l

ABSTRACT This paper presents the “Agnes Story” disaster as related to the largest inland oil spill experienced in the history of the U.S. and actions taken by EPA in coping with the problem. Contrasted to the massive oceanic spill of the TORREY CANYON, other major ship oil pollution disasters, the Santa Barbara and Gulf of Mexico offshore platform oil spills, the oil pollution resulting from the flooding produced by Tropical Storm Agnes required unprecedented actions by many governmental agencies. The inland rivers of the Middle Atlantic area experienced spills of petroleum products ranging from over 3,000,000 gallons of No. 2 fuel oil, gasoline and kerosene from storage tanks in Big Flats / Elmira, N.Y. (just north of the Pennsylvania border) to 6,000,000–8,000,000 gallons of black, highly metallic waste oil and sludge from an oil reclamation plant on the Schuylkill River. The aftermath of this gigantic inland oil spill was oil and gasoline soaked fields, oil coated trees, farm houses, homes, factories, an airport, and hundreds of stranded oil puddles, ponds and lagoons as the rivers receded to normal levels. The record setting flood stage along several miles of both the Schuylkill and Susquehanna Rivers and their tributaries was recorded vividly ashore on trees and buildings as if by a black grease pencil, drawing attention to the most widespread property damage suffered from the most devastating storm in recorded U.S. history. Cleanup of the spilled oil in the midst of other rescue and restorative actions by Federal, State and Municipal agencies was fraught with emergency response problems including: identification of major impact points, availability of resources for response actions, coordination of response actions, activation of cleanup contractors, meeting administrative requirements, and the structure for making command decisions. Along with these requirements were technical decisions to be made concerning methods of physical removal procedures, containment systems, chemical treating agents and, very importantly, protecting and restoring the environment. Major spill effects and significant cleanup operations, problems encountered, and lessons learned are presented so that future responses can be better and more efficiently dealt with in an inland oil spill disaster comparable to the “Agnes Oil Spill”.


1993 ◽  
Vol 1993 (1) ◽  
pp. 727-731
Author(s):  
Randall B. Luthi ◽  
Linda B. Burlington ◽  
Eli Reinharz ◽  
Sharon K. Shutler

ABSTRACT The Damage Assessment Regulations Team (DART), under the Office of General Counsel of the National Oceanic and Atmospheric Administration (NOAA), has centered its efforts on developing natural resource damage assessment regulations for oil pollution in navigable waters. These procedures will likely lower the costs associated with damage assessments, encourage joint cooperative assessments and simplify most assessments. The DART team of NOAA is developing new regulations for the assessment of damages due to injuries related to oil spills under the Oil Pollution Act of 1990. These regulations will involve coordination, restoration, and economic valuation. Various methods are currently being developed to assess damages for injuries to natural resources. The proposed means include: compensation tables for spills under 50,000 gallons, Type A model, expedited damage assessment (EDA) procedures, and comprehensive procedures. They are being developed to provide trustees with a choice for assessing natural resource damages for each oil spill.


1990 ◽  
Vol 30 (1) ◽  
pp. 413
Author(s):  
C. Jones ◽  
J. P. Hartley

The BP Exploration approach to oil spill control can be summed up as prevention and preparedness. In all cases our primary objective is to prevent oil spills occurring. However despite careful attention to plant design, staff training, auditing etc., oil may sometimes be spilled.For any operation, effective oil spill ontingency planning depends on having a sound understanding of the local ecological and environmental sensitivities, physical conditions and the nature, size and risks of potential spills. This information allows the definition of response strategy and appropriate resource levels (equipment and personnel). However the mere provision of resources is insufficient; equipment maintenance, staff training, oil spill exercises (planned and unannounced), agreement of responsibilities with external authorities and periodic reviews are regarded as essential to ensure adequacy of response.The implementation of these principles is demonstrated using the development and continued evolution of the oil spill plan for Sullom Voe, a major North Sea oil terminal handling ca 1 million barrels of crude per day. Changes have been made to the plan to take account of technological advances and the lessons learned from actual spills in Sullom Voe, Port Valdez and elsewhere.Oil spill contingency arrangements for onshore and nearshore exploration drilling are also considered, illustrated with recent English (on and offshore Wytch Farm) and Scottish west coast examples. The principles adopted for spill planning at oil terminals have been found to apply equally to E & P operations in sensitive areas.The paper concludes with a brief comparison of the relative costs of efforts to prevent spills with the costs of spill cleanup and damages.


Sign in / Sign up

Export Citation Format

Share Document