The Evolution of a Dispersant Spraying Platform from Turboprop to Jet Engine Aircraft

2017 ◽  
Vol 2017 (1) ◽  
pp. 2811-2825
Author(s):  
Claudia Caetano ◽  
Daniel White

ABSTRACT Abstract 2017-370. As a result of a successful modification to an Oil Spill Response Limited Boeing 727 aircraft (registration G-OSRA) to enable aerial dispersant spraying, a paper has been written, aiming to provide an insight into the introduction of a turbine aircraft dispersant-application platform and the implications of the evolution from turboprop to jet engine aircraft. Furthermore, Oil Spill Response Limited has recently commissioned and introduced a second aircraft of the same modification specification (registration G-OSRB). As a response technique, dispersant application can have a significant impact on tackling large quantities of oil at sea; however, much of its effectiveness relies on targeting the oil during the window of opportunity in which dispersant will work successfully, in the early stages of the weathering processes. Time is, therefore, a critical factor and it is this key aspect, as well as others explored in detail throughout the paper, that led to the development of a pioneering system, specifically designed to respond to oil spills, that will undoubtedly prove to have a positive impact in terms of response times to incident sites. The paper also presents the reasons supporting the choice of a Boeing 727-2S2F (RE) aircraft as the chosen platform for dispersant spraying operations, such as the power to weight ratio, cargo capacity, and rearward mounted engine positions, to name but a few. It is also important to analyse the benefits of the Boeing 727-2S2F (RE) and the dispersant spraying system it contains during the different stages of the incident life cycle, be it during the preparation phase or the response phase. In the preparation phase, one of the advantages to highlight is the resilience of having two aircraft operated under a back to back schedule of maintenance as envisioned by a maintenance program specially designed to ensure continuous operational availability. During the response phase, aircraft such as G-OSRA and G-OSRB benefit from reduced transit times to incident sites due to the higher speed through the air that is possible with jet aircraft. Also, the paper also compares some key performance indicators such as range and speed between the turboprop aircraft of choice, Hercules L-382 and the Boeing 727-2S2F (RE).

1998 ◽  
Vol 1613 (1) ◽  
pp. 105-110
Author(s):  
Fazil T. Najafi ◽  
Roy McKenzie

Both South Florida and Qatar have unique needs and requirements for oil spill response, yet both have basic needs for a contingency plan for responding to oil spills. South Florida has a diverse coastal environment that is important not only for its ecosystem but for the revenue it generates from tourism and fishing. Qatar is sitting on the world’s largest natural gas fields and some larger oil fields and is one of the world’s richest countries. The oil spill response system of South Florida differs in operational structure from that of Qatar. South Florida’s response system is a network-based operation controlled by county or city officials, depending on the degree of the spill and availability of resources. Qatar’s system is a central control operation, with primary authority and control of any oil spill response assumed by the Qatar General Petroleum Corporation (QGPC). Local industries are expected to protect their own facilities, but QGPC also responds to those spills that threaten public and government coasts and the Persian Gulf ecosystem. The University of Florida has developed a computerized database for South Florida that enables officials of national, regional, and state response teams to quickly identify and deploy required equipment and personnel for an oil spill and to follow cleanup operations. The specific advantage of the South Florida system over the Qatar system is in the oil spill response information system database, which includes information on oil-sensitive shorelines, response teams, disposal sites, cleanup organizations, and equipment. Furthermore, the typical oil spill cleanup response times for selected contractors indicate the most efficient choice of contractor for possible oil spills at different locations.


Author(s):  
Alexander Ermolov ◽  
Alexander Ermolov

International experience of oil spill response in the sea defines the priority of coastal protection and the need to identify as most valuable in ecological terms and the most vulnerable areas. Methodological approaches to the assessing the vulnerability of Arctic coasts to oil spills based on international systems of Environmental Sensitivity Index (ESI) and geomorphological zoning are considered in the article. The comprehensive environmental and geomorphological approach allowed us to form the morphodynamic basis for the classification of seacoasts and try to adapt the international system of indexes to the shores of the Kara Sea taking into account the specific natural conditions. This work has improved the expert assessments of the vulnerability and resilience of the seacoasts.


2021 ◽  
Vol 13 (12) ◽  
pp. 6585
Author(s):  
Mihhail Fetissov ◽  
Robert Aps ◽  
Floris Goerlandt ◽  
Holger Jänes ◽  
Jonne Kotta ◽  
...  

The Baltic Sea is a unique and sensitive brackish-water ecosystem vulnerable to damage from shipping activities. Despite high levels of maritime safety in the area, there is a continued risk of oil spills and associated harmful environmental impacts. Achieving common situational awareness between oil spill response decision makers and other actors, such as merchant vessel and Vessel Traffic Service center operators, is an important step to minimizing detrimental effects. This paper presents the Next-Generation Smart Response Web (NG-SRW), a web-based application to aid decision making concerning oil spill response. This tool aims to provide, dynamically and interactively, relevant information on oil spills. By integrating the analysis and visualization of dynamic spill features with the sensitivity of environmental elements and value of human uses, the benefits of potential response actions can be compared, helping to develop an appropriate response strategy. The oil spill process simulation enables the response authorities to judge better the complexity and dynamic behavior of the systems and processes behind the potential environmental impact assessment and thereby better control the oil combat action.


1995 ◽  
Vol 35 (1) ◽  
pp. 830
Author(s):  
D.J. Blackmore

It is vital that there is a credible and well organised arrangement to deal with oil spills in Australia.The National Plan to Combat Pollution of the Sea by Oil, the umbrella oil spill response plan for Australia, is a combined effort by the Commonwealth and State Governments, the oil industry and the shipping industry.The Australian Marine Oil Spill Centre (AMOSC), formed in 1991, is an industry centre set up for rapid response with equipment and resources, together with a training and industry coordination role.A review of the National Plan in 1992, identified, amongst a number of issues, that the National Plan needed to be re-focussed, to ensure full integration of all government and industry activities for the first time. This has led to greatly improved understanding between government and industry and significant improvements to Australia's oil spill response preparedness. The National Plan review has also resulted in a clearer definition of the responsibilities for operational control, together with the organisational structure to deliver a successful response.The current state of Australia's National Plan is such that it does provide confidence that there is the capacity to deliver an effective response to oil spills in the marine environment. Nevertheless, there is more to be done, particularly in the areas of planning and exercises.


1993 ◽  
Vol 1993 (1) ◽  
pp. 127-133
Author(s):  
Mac W. McCarthy ◽  
John McGrath

ABSTRACT On July 22, 1991, the Tuo Hai, a 46,500 ton Chinese grain carrier, collided with the Tenyo Maru, a 4,800 ton Japanese fish processing ship, off the coast of Washington State. The Tenyo Maru sank, creating an oil spill that cost upwards of $4 million (U.S.) to clean up. The incident initiated a joint response from the U.S. and Canadian governments. As part of this response, the Canadian Coast Guard mobilized an SRN-6 hovercraft. This air cushioned vehicle (ACV) provided logistical support to responders on both sides of the international boundary. The response operation along the Pacific Coast was extensive. Dense fog and the remote location of the impacted area provided formidable challenges to the cleanup effort. It was the mission scenario of the Canadian SRN-6 hovercraft to provide logistical support—as an experiment in ACV utility—to the organizations responding to this incident. Based on this experience, it can be argued that the hovercraft offers great potential value in responding to marine oil spills. Appropriate application of ACV technology can enhance oil spill response work, spill waste management, and incident surveillance. This paper discusses the contribution of the SRN-6 hovercraft to the Tenyo Maru response, briefly examines the use of another, very different hovercraft, during a response in the Gulf of St. Lawrence, and reviews a new hovercraft design and discusses its potential contributions.


1995 ◽  
Vol 1995 (1) ◽  
pp. 503-508
Author(s):  
Hussein Bin Rahmat ◽  
Mohd Radzuan Bin Yusof

ABSTRACT The increasing incidence of oil spills in the Strait of Malacca and the South China Sea has resulted in growing concern about Malaysia's capability to respond to oil spills in its waters. This concern is compounded by the ever-growing number of oil tankers plying the Strait of Malacca and the South China Sea, as well as the intensifying exploration and development of offshore petroleum resources. Various measures were taken by the government to deal with the problem, including a review of its National Oil Spill Contingency Plan (NOSCP) and incorporating a coordinated and a cost-effective response mechanism among the various government agencies. The incorporation of the Petroleum Industry of Malaysia Mutual Aid Group (PIMMAG), which enables the oil industry to pool its oil spill response resources, reflects the industry's commitment to strengthen the NOSCP. Since the mid 1970s, a number of regional plans have been instituted including the Traffic Separation Scheme for the Strait of Malacca, the Strait of Malacca and Singapore Revolving Fund, the Lombok-Macassar Oil Spill Contingency Plan, the Brunei Bay Oil Spill Contingency Plan, the ASEAN Oil Spill Response Plan, and the proposed ASCOPE Oil Spill Contingency Plan.


1991 ◽  
Vol 1991 (1) ◽  
pp. 673-676
Author(s):  
Edward Tennyson

ABSTRACT Recent large oil spills from tankers have reaffirmed the need for continuing technology assessment and research to improve oil-spill response capabilities. The Minerals Management Service (MMS) remains a lead agency in conducting these studies. This paper discusses MMS concerns, as reinforced by the acceleration of its research program in 1990. It briefly assesses the current state-of-the-art technology for major aspects of spill response, including remote sensing, open-ocean containment, recovery, in-situ burning, chemical treating agents, beach-line cleanup, and oil behavior. The paper reports on specific research projects that have begun to yield information that will improve detection and at-sea equipment performance. The first detection project, for which MMS has patent pending, involves the use of shipboard navigational radar to track slicks at relatively long range. The second project involves the use of conventional containment and cleanup in a downwind mode, which is contrary to the traditional procedures. The paper also discusses current research projects, including the development of an airborne, laser-assisted fluorosensor that can determine whether apparent slicks contain oil. Additional projects involve the development of improved strategies for responding to oil in broken-ice conditions, for gaining an improved understanding of the fate and behavior of spilled oil as it affects response strategies, and for reopening and operating the oil and hazardous materials simulated environmental test tank (OHMSETT) facility in Leonardo, New Jersey. Recent progress on the development of safe and environmentally acceptable strategies to burn spilled oil in-situ is also discussed. The OHMSETT facility is necessary for testing prospective improvements in chemical treating agents and to develop standard procedures for testing and evaluating response equipment.


1991 ◽  
Vol 1991 (1) ◽  
pp. 3-5
Author(s):  
O. Khalimonov ◽  
S. Nunuparov

ABSTRACT International and domestic experience in the response to major oil spills at sea confirms the vital necessity of a national contingency plan to guarantee effective utilization of national resources and those of assisting countries and organizations. Experience in responding to recent major oil spills underlines deficiencies connected with the shortage of technical means and also with ineffective organization of the response and cooperation of all parties involved. This results in unjustifiable delays in decision making and, finally, in catastrophic damages to the environment. The main principles of the U.S.S.R. national oil spill response plan, currently under consideration for approval, are as follows:involvement of a wide range of national forces and forces of the neighboring countries under preliminary agreed-upon schemes;strengthening and development of appropriate legal instruments to stipulate obligations of the parties involved in pollution response operations;development of a mechanism to reduce impediments to financial, technical, and related agreements required prior to commencement of operations (sources of finances, preliminary approval of the response technology by competent authorities, facilitation of custom procedures);unification of the structure of the U.S.S.R national contingency plan with a view to making it compatible with corresponding plans of neighboring countries following the prototype developed by the International Maritime Organization (IMO);cooperation in the establishment of the international monitoring system, data bank, and computerized exchange of information.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1453-1470
Author(s):  
LT Christopher M. Kimrey

ABSTRACT 2017-205 Catastrophic events like Deepwater Horizon, Exxon Valdez, major hurricanes, and other such anomalies have a tendency to overwhelm the initial crisis management leadership due to the chaotic nature of the event. The inability to quickly and accurately make critical assessments about the magnitude and complexity of the emerging catastrophe can spell disaster for crisis managers long before the response ever truly takes shape. This paper argues for the application of metacognitive models for sense and decision-making. Rather than providing tools and checklists as a recipe for success, this paper endeavors to provide awareness of the cognitive processes and heuristics that tend to emerge in crises including major oil spills, making emergency managers aware of their existence and potential impacts. Awareness, we argue, leads to recognition and self-awareness of key behavioral patterns and biases. The skill of metacognition—thinking about thinking—is what we endeavor to build through this work. Using a literature review and cogent application to oil spill response, this paper reviews contemporary theories on metacognition and sense-making, as well as concepts of behavioral bias and risk perception in catastrophic environments. When catastrophe occurs—and history has proven they will—the incident itself and the external pressures of its perceived management arguably emerge simultaneously, but not necessarily in tandem with one another. Previous spills have demonstrated how a mismanaged incident can result in an unwieldy and caustic confluence of external forces. This paper provides an awareness of biases that lead to mismanagement and apply for the first time a summary of concepts of sense-making and metacognition to major oil spill response. The views and ideas expressed in this paper are those of the author and do not necessarily reflect the views of the U.S. Coast Guard or Department of Homeland Security.


Sign in / Sign up

Export Citation Format

Share Document