PETROLEUM GENERATION AND SOURCE ROCK ASSESSMENT IN TERRIGENOUS SEQUENCES: AN UPDATE

1991 ◽  
Vol 31 (1) ◽  
pp. 297 ◽  
Author(s):  
T.G. Powell ◽  
C.J. Boreham

Analytical pyrolysis and sealed tube pyrolysis at low temperatures have been used to study the timing and petroleum generating capacity of selected Permian through Tertiary coals and carbonaceous shales in relation to their petrographic and elemental composition. The results show that judicious application of flash pyrolysis techniques in conjunction with more conventional procedures are essential for effective source rock assessment in terrigenous source rocks, particularly in those of lower quality.Although the petroleum potential of the samples follows the broad trends in petrographic composition established for Australian coals, that is, relative proportions of vitrinite, inertinite and liptinite, there is much variation which cannot be explained petrographically at the maceral group level. Furthermore, there is no simple relationship between pyrolytic hydrocarbon yield from terrigenous kerogens and overall elemental composition. The yield and composition of pyrolysable normal hydrocarbons varies widely depending on the nature and amount of liptinite macerals, particularly for samples with Hydrogen Indices below 300. Liptinite-poor (Mass balance calculations based on Rock-Eval analyses of samples from the Jurassic Walloon Coal Measures show that the maximum oil formation occurs over a very narrow maturation window from 0.8 to 1.0 per cent Ro, although small amounts of oil may be generated at lower maturation levels. The gas to oil ratio of the generated hydrocarbons is constant up to a reflectance level of 1.0 per cent Ro, where upon the proportion of gas increases rapidly. The low quality Permian source rocks from the Cooper Basin have a lower ratio of labile to refractory kerogen than the Jurassic and Tertiary examples. As a result, the gas to oil ratio of hydrocarbons formed in the oil window is higher and the oil potential appears to be exhausted at an earlier stage of maturation. Efficient migration of hydrocarbons from Permian sediments in the Cooper Basin also appears to occur at a relatively early stage of maturation compared with the Jurassic Walloon Coal Measures.

2020 ◽  
Vol 113 (1) ◽  
pp. 24-42
Author(s):  
Emilia Tulan ◽  
Michaela S. Radl ◽  
Reinhard F. Sachsenhofer ◽  
Gabor Tari ◽  
Jakub Witkowski

AbstractDiatomaceous sediments are often prolific hydrocarbon source rocks. In the Paratethys area, diatomaceous rocks are widespread in the Oligo-Miocene strata. Diatomites from three locations, Szurdokpüspöki (Hungary) and Limberg and Parisdorf (Austria), were selected for this study, together with core materials from rocks underlying diatomites in the Limberg area. Bulk geochemical parameters (total organic carbon [TOC], carbonate and sulphur contents and hydrogen index [HI]) were determined for a total of 44 samples in order to study their petroleum potential. Additionally, 24 samples were prepared to investigate diatom assemblages.The middle Miocene diatomite from Szurdokpüspöki (Pannonian Basin) formed in a restricted basin near a volcanic silica source. The diatom-rich succession is separated by a rhyolitic tuff into a lower non-marine and an upper marine layer. An approximately 12-m thick interval in the lower part has been investigated. It contains carbonate-rich diatomaceous rocks with a fair to good oil potential (average TOC: 1.28% wt.; HI: 178 to 723 mg HC/g TOC) in its lower part and carbonate-free sediments without oil potential in its upper part (average TOC: 0.14% wt.). The composition of the well-preserved diatom flora supports a near-shore brackish environment. The studied succession is thermally immature. If mature, the carbonate-rich part of the succession may generate about 0.25 tons of hydrocarbons per square meter. The diatomaceous Limberg Member of the lower Miocene Zellerndorf Formation reflects upwelling along the northern margin of the Alpine-Carpathian Foreland. TOC contents are very low (average TOC: 0.13% wt.) and demonstrate that the Limberg Member is a very poor source rock. The same is true for the underlying and over-lying rocks of the Zellerndorf Formation (average TOC: 0.78% wt.). Diatom preservation was found to differ considerably between the study sites. The Szurdokpüspöki section is characterised by excellent diatom preservation, while the diatom valves from Parisdorf/Limberg are highly broken. One reason for this contrast could be the different depositional environments. Volcanic input is also likely to have contributed to the excellent diatom preservation in Szurdokpüspöki. In contrast, high-energy upwelling currents and wave action may have contributed to the poor diatom preservation in Parisdorf. The hydrocarbon potential of diatomaceous rocks of Oligocene (Chert Member; Western Carpathians) and Miocene ages (Groisenbach Member, Aflenz Basin; Kozakhurian sediments, Kaliakra canyon of the western Black Sea) has been studied previously. The comparison shows that diatomaceous rocks deposited in similar depositional settings may hold largely varying petroleum potential and that the petroleum potential is mainly controlled by local factors. For example, both the Kozakhurian sediments and the Limberg Member accumulated in upwelling environments but differ greatly in source rock potential. Moreover, the petroleum potential of the Szurdokpüspöki diatomite, the Chert Member and the Groisenbach Member differs greatly, although all units are deposited in silled basins.


1996 ◽  
Vol 36 (1) ◽  
pp. 322
Author(s):  
E.M. Alexander ◽  
D. Pegum ◽  
P. Tingate ◽  
C.J. Staples ◽  
B.H. Michaelsen ◽  
...  

The Eringa Trough occupies an area of over 8,000 km2 in SA and the NT and contains an estimated 1,500 m of Permo-Carboniferous and over 1,000 m of Mesozoic sediments. Early Permian depositional history of this frontier region is similar to that of the Cooper Basin in northeastern SA. The Eringa Trough has limited seismic coverage and sparse petroleum and mineral exploration drillholes are located on the trough margins. Interpretation of 255 km of new seismic and reprocessed data has delineated a number of undrilled prospects.Excellent quality reservoirs are present. Early mature to mature, Permian and Jurassic source rocks occur, including good to excellent Type-II kerogens within an equivalent of the Jurassic Birkhead Formation. Apatite fission track analysis of Permian and Jurassic sediment shows palaeo-temperatures were approximately 30-40°C higher than at present and that cooling occurred within the last 60 Ma. This suggests that Permian and Jurassic sediments in the deeper parts of the Eringa Trough have experienced temperatures suitable for petroleum generation.An integrated evaluation of the Eringa Trough in SA and the NT has resulted in a greater understanding of this frontier area which has the potential for significant commercial petroleum discoveries.


1985 ◽  
Vol 25 (1) ◽  
pp. 15
Author(s):  
P. Ties ◽  
R.D. Shaw ◽  
G.C. Geary

The Clarence-Moreton Basin covers an area of some 28 000 km2 in north-eastern New South Wales and south-eastern Queensland. The basin is relatively unexplored, with a well density in New South Wales of one per 1600 km2. Since 1980, Endeavour Resources and its co-venturers have pursued an active exploration programme which has resulted in the recognition of significant petroleum potential in the New South Wales portion of the basin.Previous studies indicated that the Upper Triassic to Lower Cretaceous Clarence-Moreton Basin sequence in general, lacked suitable reservoirs and had poor source- rock potential. While exinite rich, oil-prone source rocks were recognised in the Middle Jurassic Walloon Coal Measures, they were considered immature for oil generation. Moreover, during the 1960's the basin acquired a reputation as an area where seismic records were of poor quality.These ideas are now challenged following the results of a new round of exploration which commenced in the New South Wales portion of the basin in 1980. This exploration has involved the acquisition of over 1000 km of multifold seismic data, the reprocessing of some 200 km of existing single fold data, and the drilling of one wildcat well. Over twenty large structural leads have been identified, involving trapping mechanisms ranging from simple drape to antithetic and synthetic fault blocks associated with normal and reverse fault dependent and independent closures.The primary exploration targets in the Clarence- Moreton Basin sequence are Lower Jurassic sediments comprising a thick, porous and permeable sandstone unit in the Bundamba Group, and channel and point-bar sands in the Marburg Formation. Source rocks in these and the underlying Triassic coal measures are gas-prone and lie at maturity levels compatible with gas generation. In contrast, it was established from the results of Shannon 1 that the Walloon Coal Measures are mature for oil generation and this maturity regime is now considered to be applicable to most of the basin in New South Wales.A consideration of reservoir and source rock distribution, together with structural trends across the basin in Petroleum Exploration Licences 258 and 259, has led to the identification of three prospective fairways, two of which involve shallow oil plays. Exploration of these fairways is currently the focus of an ongoing programme of further seismic data acquisition and drilling.


2016 ◽  
Vol 56 (2) ◽  
pp. 594
Author(s):  
Lisa Hall ◽  
Tehani Palu ◽  
Chris Boreham ◽  
Dianne Edwards ◽  
Tony Hill ◽  
...  

The Australian Petroleum Source Rocks Mapping project is a new study to improve understanding of the petroleum resource potential of Australia’s sedimentary basins. The Permian source rocks of the Cooper Basin, Australia’s premier onshore hydrocarbon-producing province, are the first to be assessed for this project. Quantifying the spatial distribution and petroleum generation potential of these source rocks is critical for understanding both the conventional and unconventional hydrocarbon prospectivity of the basin. Source rock occurrence, thickness, quality and maturity are mapped across the basin, and original source quality maps prior to the onset of generation are calculated. Source rock property mapping results and basin-specific kinetics are integrated with 1D thermal history models and a 3D basin model to create a regional multi-1D petroleum systems model for the basin. The modelling outputs quantify both the spatial distribution and total maximum hydrocarbon yield for 10 source rocks in the basin. Monte Carlo simulations are used to quantify the uncertainty associated with hydrocarbon yield and to highlight the sensitivity of results to each input parameter. The principal source rocks are the Permian coals and carbonaceous shales of the Gidgealpa Group, with highest potential yields from the Patchawarra Formation coals. The total generation potential of the Permian section highlights the significance of the basin as a world-class hydrocarbon province. The systematic workflow applied here demonstrates the importance of integrated geochemical and petroleum systems modelling studies as a predictive tool for understanding the petroleum resource potential of Australia’s sedimentary basins.


2004 ◽  
Vol 44 (1) ◽  
pp. 223 ◽  
Author(s):  
H. Volk ◽  
S.C. George ◽  
C.J. Boreham ◽  
R.H. Kempton

The molecular composition of fluid inclusion (FI) oils from Leander Reef–1, Houtman–1 and Gage Roads–2 provide evidence of the origin of palaeo-oil accumulations in the offshore Perth Basin. These data are complemented by compound specific isotope (CSI) profiles of n-alkanes for the Leander Reef–1 and Houtman–1 samples, which were acquired on purified n-alkane fractions gained by micro-fractionation of lean FI oil samples, showing the technical feasibility of this technique. The Leander Reef–1 FI oil from the top Carynginia Formation shares many biomarker similarities with oils from the Dongara and Yardarino oilfields, which have been correlated with the Early Triassic Kockatea Shale. The heavier isotopic values for the C15-C25 n-alkanes in the Leander Reef–1 FI oil indicate, however, that it is a mixture, and suggest that the main part of this oil (~90%) was sourced from the more terrestrial and isotopically heavier Early Permian Carynginia Formation or Irwin River Coal Measures. This insight would have been precluded when looking at molecular evidence alone. The Houtman–1 FI oil from the top Cattamarra Coal Measures (Middle Jurassic) was sourced from a clay-rich, low sulphur source rock with a significant input of terrestrial organic matter, deposited under oxic to sub-oxic conditions. Biomarkers suggest sourcing from a more prokaryotic-dominated facies than for the other FI oils, possibly a saline lagoon. The Houtman–1 FI oil δ13C CSI n-alkane data are similar to those acquired on the Walyering–2 oil. Possible lacustrine sources may exist in the Early Jurassic Eneabba Formation and are present in the Late Jurassic Yarragadee Formation. The low maturity Gage Roads–2 FI oil from the Carnac Formation (Early Cretaceous) was derived from a strongly terrestrial, non-marine source rock containing a high proportion of Araucariacean-type conifer organic matter. It has some geochemical differences to the presently reservoired oil in Gage Roads–1, and was probably sourced from the Early Cretaceous Parmelia Formation.


1985 ◽  
Vol 25 (1) ◽  
pp. 362 ◽  
Author(s):  
P.E. Williamson ◽  
C.J. Pigram ◽  
J.B. Colwell ◽  
A.S. Scherl ◽  
K.L. Lockwood ◽  
...  

Exploration in the Bass Basin has mainly concentrated on the Eocene part of the Eastern View Coal Measures with the pre-Eocene stratigraphy hardly being tested. Structural mapping using a good quality Bureau of Mineral Resources regional seismic survey and infill industry seismic data, in conjunction with seismic stratigraphy and well data, has generated an understanding of the structure and stratigraphy of the pre- Eocene basin, which suggests that exploration potential exists in structural and stratigraphic leads of both Paleocene and Cretaceous age.The Paleocene structure is influenced by the reactivation of normal faults developed at the time of the mid Cretaceous rift unconformity and reflects drape over deeper features. Consequently fault dependent structural closures often persist from Paleocene to (?)Jurassic levels. Possible stratigraphic traps are also observed against horst blocks and around the basin margins. The longitudinal fault directions are northwest and west northwest with an oblique northerly direction and a prevailing north northeasterly transverse direction.The Paieocene and Upper Cretaceous part of the Eastern View Coal Measures consists of sands, shales and coals deposited in alluvial fans, on flood plains, and in lakes. These are underlain by Early Cretaceous Otway Groups, sands, shales and volcanics. Both intervals have potential reservoir and source rocks and often occur at mature depths. No pre-Otway Group sediments have been encountered in wells in the Bass Basin. However, the Permo- Carboniferous and possibly Triassic strata that occur in Northern Tasmania exhibit reservoir and source rock potential and may extend offshore beneath the Bass Basin.Pre-Eocene structural and stratigraphic studies of the Bass Basin thus point to reservoir and hydrocarbon source potential for possible multiple hydrocarbon exploration targets.


Geology ◽  
2020 ◽  
Vol 48 (5) ◽  
pp. 483-487 ◽  
Author(s):  
Israa S. Abu-Mahfouz ◽  
Joe Cartwright ◽  
Erdem Idiz ◽  
John N. Hooker ◽  
Stuart A. Robinson

Abstract We present evidence that hydrocarbon source rocks can be preconditioned for primary hydrocarbon migration at an early stage of catagenesis by pore-scale processes linked to silica diagenesis. The evidence comes from a detailed petrographic and geochemical study of the Jordan Oil Shale (JOS), an immature to early mature, Upper Cretaceous to Paleogene source rock developed on the platform regions of central and southern Jordan. Diagenesis of biogenic silica led to silicification of the source rock interval and the growth of chert nodules. Localization of bitumen veins in reaction rims around these nodules is interpreted to indicate that silica diagenesis promotes the early mobilization of hydrocarbons from the geochemically identical, disseminated bitumen within the host mudstones. We propose a model in which early-formed bitumen migrated into neoforming mode I fractures that formed as a result of the crystallization pressure imposed from the growing chert nodule. Hydraulic fracturing occurred under elevated bitumen fluid pressures that approached lithostatic stress values under burial depths of the order of 1000 m. The recognition that silica diagenesis can promote the early migration of neoforming bitumen raises the possibility that primary hydrocarbon migration may occur earlier and at shallower depths than predicted by kinetic modeling approaches wherever silica diagenetic reactions are coeval with catagenesis.


Author(s):  
Vượng Nguyễn Văn

The Dong Ho sedimentary formation consists of gravel, sand and sandstone, mudstone interbeded with asphalt layer or oil shale cropping out at Quang Ninh is considered as outcrop of petroleum potential source rock and correlated to source rock of the Cenozoic basins on the continental shelf of Southeast Asia. Geochemical investigation  of major and trace elements content variation from 14 typical samples selected from diferent layers leads to divide the Dong Ho formation into two parts: the lower part characterized by unclear variation while the upper part exposing a more clear trend. The paleoenvironmental proxy and the CIA, CIW, PIA and CPA indices of the Dong Ho formation revealed high weathering intensity. V/Ni and C/Cr s vary from 0.14 to 1.52; and from 0.02 to 0.52 respectively indicate to oxic depositional environment. The provenance of the Dong Ho sedimentary layers come from the recycling of sedimentary source rocks and deposited within freshwater lacustrine environment dominated with humid climate with estimated mean annual rainfall of 1533 mm / yr ± 181 mm before changing to wet and reductioin environment during diagenesis.


1982 ◽  
Vol 8 ◽  
pp. 73-86
Author(s):  
Holger Lindgreen ◽  
Erik Thomsen ◽  
Per Wrang

Little has been published on source rocks of Paleozoic and Mesozoic ages in the North Sea. Gas in many fields of the southern North Sea is known to originate from Late Carboniferous Coal Measures, (Eames 1975). In the East Midlands area of England, the oil in Carboniferous reservoirs is believed to originate from Carboniferous rocks (Bernard & Cooper 1981). Several papers published on the oil fields in the southern and northern North Sea suggest a Late Jurassic source rock (see review by Weismann 1979 and Bernard & Cooper 1981). Also Early and Middle Jurassic shales are suggested as possible source rocks in parts of the North Sea (Fuller 1975, Oudin 1976). Published data on source rock conditions in the Danish sector is limited to Weismann (1979).


2022 ◽  
Vol 9 ◽  
Author(s):  
Tengfei Zhou ◽  
Yaoqi Zhou ◽  
Hanjie Zhao ◽  
Manjie Li ◽  
Hongyu Mu

A suite of source rock consists of mudstone and shale, with great thickness and continuous deposition was found in the well LK-1 in Lingshan island in Ri-Qing-Wei basin. In order to evaluate the hydrocarbon generation prospects of these source rock and find the mechanism of organic matter enrichment, shale samples were selected from the core for TOC (total organic carbon) and element geochemistry analysis. The results show that organic matter abundance of the source rocks are generally high with average TOC content of 1.26 wt%, suggesting they are good source rocks. The geochemical features show that the sedimentary environment is mostly anoxic brackish water to salt water environment with arid to semiarid climate condition. The enrichment mechanism of organic matter varied with the evolution of the basin, which was divided into three stages according to the sedimentary characteristics. In the initial-middle period of rifting evolution (stage 1 and early stage 2), paleoproductivity is the major factor of OM-enrichment reflecting by high positive correlation between the TOC contents and paleoproductivity proxies. While with the evolution of the rift basin, redox condition and terrigenous clastic input became more and more important until they became the major factor of OM enrichment in the middle stage of rift evolution (stage 2). In the later stage of rift evolution (latest stage 2 and stage 3), besides terrigenous clastic input, the effect of paleoclimate on OM-enrichment increased gradually from a minor factor to a major factor.


Sign in / Sign up

Export Citation Format

Share Document