SWELLING BEHAVIOUR OF MIXED-LAYER CLAYS IN HYDROCARBON RESERVOIRS

1994 ◽  
Vol 34 (1) ◽  
pp. 366
Author(s):  
Julian C. Baker ◽  
Philippa J.R. Uwins ◽  
Ian D.R. Mackinnon

The freshwater sensitivity of a variety of mixed-layer illite/smectite and chlorite/smectite clays has been studied with an Environmental Scanning Electron Microscope (ESEM) in order to determine whether all hydrocarbon reservoirs hosting these clays should be regarded as freshwater sensitive. Experimental procedures involved closely comparing in situ mixed-layer clay within selected areas at high magnification before and after prolonged freshwater treatments.The response of smectite-rich illite/smectite (two samples; 10–20 per cent illite interlayers) to freshwater immersion varied greatly. One sample rapidly swelled to many times its original volume to form a pervasive gel that greatly reduced porosity and permeability, whereas the other sample underwent only a subtle morphological change that had little or no adverse effect on reservoir quality. Illite-rich illite/smectite (three samples; 65—>85 per cent illite interlayers) and chlorite-rich chlorite/smectite (two samples; 50 per cent and >70 per cent chlorite interlayers) underwent no morphological change when immersed in freshwater for up to three months, indicating that these clays in sandstones are unlikely to cause formation damage due to swelling if exposed to freshwater-based fluids.

1985 ◽  
Vol 2 (2) ◽  
pp. 89-95 ◽  
Author(s):  
J. N. Bohra ◽  
K. S. W. Sing

Adsorption isotherms of nitrogen have been determined at 77 K on three samples of carbonized rayon yarn, both before and after the pre-adsorption of n-nonane. In their original state the three samples were all highly microporous. Application of the αs-method of isotherm analysis reveals that their micropore volumes were 0·17–0·19 cm3g−1 and their external surface areas 20–27 m2g−1 (the corresponding BET areas being 427–483 m2g−1). Nonane pre-adsorption resulted in blockage of the entire micropore structure only in the case of one sample: micropore volumes ∼0·1 cm3g−1 were still available for nitrogen adsorption in the other two samples. It appears that nitrogen molecules were able to gain access to some parts of these micropore structures through wider pore entrances which were not completely blocked by the pre-adsorbed nonane. The work has shown that the nonane pre-adsorption method requires further investigation before it can be used with confidence for the assessment of microporosity.


2018 ◽  
Vol 83 (02) ◽  
pp. 191-197 ◽  
Author(s):  
Xueyin Yuan ◽  
Chao Gao ◽  
Jing Gao

AbstractThe phase transitions involving calcite (CaCO3-I), CaCO3-II, CaCO3-III and CaCO3-IIIb were investigated using a diamond anvil cell and micro-Raman spectroscopy. Based on the results obtained from in situ observations and Raman measurements made with six natural calcite crystals, the phase transition from calcite to CaCO3-II took place between 1.56 and 1.67 GPa under ambient temperature. Under a precise pressure of 1.97 ± 0.03 GPa, three CaCO3 samples were observed to transform from CaCO3-II directly to CaCO3-III, while in the other three samples both CaCO3-III and CaCO3-IIIb crystal structures were detected. Transformation from CaCO3-IIIb to CaCO3-III was completed in a short period in one sample, whereas in the other two samples coexistence of CaCO3-III and CaCO3-IIIb was observed over a wide pressure range from 1.97 to 3.38 GPa, with sluggish transformation from CaCO3-IIIb to CaCO3-III being observed after the samples were preserved under 3.38 GPa for 72 h. Hence, it can be concluded that CaCO3-IIIb is a metastable intermediate phase occurring during the reconstructive transformation from CaCO3-II to CaCO3-III. Splitting of the C–O in-plane bending (ν4) and symmetric stretching (ν1) vibrations and appearance of new lattice vibrations in the Raman spectra of CaCO3-III and CaCO3-IIIb suggest a lowering in crystal symmetry during the transformation from CaCO3-II through CaCO3-IIIb to CaCO3-III, which is in good agreement with the observed sequence of phase symmetries.


2019 ◽  
Vol 112 (2-3) ◽  
pp. 517-542 ◽  
Author(s):  
Suzanne M. Picazo ◽  
Tanya A. Ewing ◽  
Othmar Müntener

Abstract We present in situ rutile and titanite U–Pb geochronology for three samples from the Ur breccia, which forms the boundary between the Malenco unit and the Margna nappe (Eastern Central Alps) near Pass d’Ur in southeast Switzerland. These sampled both oceanic brecciated material and a blackwall reaction zone in contact with a micaschist and serpentinized peridotite. Peak temperatures during Alpine metamorphism in these units were ~ 460 ± 30 °C. Textural observations combined with new geochronological data indicate that rutile and titanite both grew below their closure temperatures during Alpine metamorphism. We present a technique to calculate the most precise and accurate ages possible using a two-dimensional U–Pb isochron on a Wetherill concordia. Rutile from two samples gave a U–Pb isochron age of 63.0 ± 3.0 Ma. This age conflicts with previous 39Ar–40Ar data on heterogeneous amphiboles from which an age of 90–80 Ma was inferred for the high pressure part of the Alpine evolution, but is consistent with K–Ar ages and Ar–Ar ages on phengitic white mica. Titanite from three samples gave a U–Pb isochron age of 54.7 ± 4.1 Ma. This age is consistent with Rb–Sr isochron ages on mylonites along and in the footwall of the Lunghin–Mortirolo movement zone, a major boundary that separates ductile deformation in the footwall from mostly localized and brittle deformation in the hangingwall. Our ages indicate a Paleocene rather than upper Cretaceous metamorphism of the Pennine–Austroalpine boundary and permit at most ~ 15 Myr, and possibly much less, between the growth of rutile and titanite.


2011 ◽  
Vol 194-196 ◽  
pp. 873-877
Author(s):  
Jian De Han ◽  
Gang Hua Pan ◽  
Wei Sun

Environmental Scanning Electron Microscope (ESEM) and Energy Dispersive X-ray Spectroscopy (EDS) were used to in situ observation microstructure character changes of hardened cement paste due to carbonation. Three types water-to-cement ratio of 0.53, 0.35 and 0.23 were research. When w/c=0.53, Carbonation enlarged the cracks, and some calcium carbonate spots appear on the calcium hydroxide crystals. When w/c=0.35, less cracks appear, and some white flocculent calcium carbonated appear on the calcium hydroxide crystals than above w/c=0.53 cement paste. When w/c=0.23, the microstructure character before and after carbonation have distinct changes, and some cracks become small or disappeared. Unhydrated cement clinkers continue to hydrate reactions and there are many white SiO2•nH2O (silica gel) after C-S-H gel carbonation in cement paste matrix.


2001 ◽  
Vol 7 (S2) ◽  
pp. 1276-1277
Author(s):  
Y. Akin ◽  
R.E. Goddard ◽  
W. Sigmund ◽  
Y.S. Hascicek

Deposition of highly textured ReBa2Cu3O7−δ (RBCO) films on metallic substrates requires a buffer layer to prevent chemical reactions, reduce lattice mismatch between metallic substrate and superconducting film layer, and to prevent diffusion of metal atoms into the superconductor film. Nickel tapes are bi-axially textured by cold rolling and annealing at appropriate temperature (RABiTS) for epitaxial growth of YBa2Cu3O7−δ (YBCO) films. As buffer layers, several oxide thin films and then YBCO were coated on bi-axially textured nickel tapes by dip coating sol-gel process. Biaxially oriented NiO on the cube-textured nickel tape by a process named Surface-Oxidation- Epitaxy (SEO) has been introduced as an alternative buffer layer. in this work we have studied in situ growth of nickel oxide by ESEM and hot stage.Representative cold rolled nickel tape (99.999%) was annealed in an electric furnace under 4% hydrogen-96% argon gas mixture at 1050°C to get bi-axially textured nickel tape.


2017 ◽  
Vol 120 (3) ◽  
pp. 303-322
Author(s):  
D. Pienaar ◽  
B.M. Guy ◽  
C. Pienaar ◽  
K.S. Viljoen

Abstract Mineralogical and textural variability of ores from different sources commonly leads to processing inefficiencies, particularly when a processing plant is designed to treat ore from a single source (i.e. ore of a relatively uniform composition). The bulk of the Witwatersrand ore in the Klerksdorp goldfield, processed at the AngloGold Ashanti Great Noligwa treatment plant, is derived from the Vaal Reef (>90%), with a comparatively small contribution obtained from the Crystalkop Reef (or C-Reef). Despite the uneven contribution, it is of critical importance to ensure that the processing parameters are optimized for the treatment of both the Vaal and C-Reefs. This paper serves to document the results of a geometallurgical study of the C-Reef at the Great Noligwa gold mine in the Klerksdorp goldfield of South Africa, with the primary aim of assessing the suitability of the processing parameters that are in use at the Great Noligwa plant. The paper also draws comparisons between the C-Reef and the Vaal Reef A-facies (Vaal Reef) and attempts to explain minor differences in the recovery of gold and uranium from these two sources. Three samples of the C-Reef were collected in-situ from the underground operations at Great Noligwa mine for mineralogical analyses and metallurgical tests. Laboratory-scale leach tests for gold (cyanide) and uranium (sulphuric acid) were carried out using dissolution conditions similar to that in use at the Great Noligwa plant, followed by further diagnostic leaching in the case of gold. The gold in the ore was found to be readily leachable with recoveries ranging from 95% to 97% (as opposed to 89% to 93% for the Vaal Reef). Additional recoveries were achieved in the presence of excess cyanide (96% to 98%). The recovery of uranium varied between 72% and 76% (as opposed to 30% to 64% for the Vaal Reef), which is substantially higher than predicted, given the amount of brannerite in the ore, which is generally regarded as refractory. Thus, the higher uranium recoveries from the C-Reef imply that a proportion of the uranium was recovered by the partial dissolution of brannerite. As the Vaal Reef contain high amounts of chlorite (3% to 8%), which is an important acid consumer, it is considered likely that this could have reduced the effectiveness of the H2SO4 leach in the case of the ore of the Vaal Reef. Since the gold and uranium recoveries from the C-Reef were higher than the recoveries from the Vaal Reef, the results demonstrate that the processing parameters used for treatment of the Vaal Reef are equally suited to the treatment of the C-Reef. Moreover, small processing modifications, such as increased milling and leach retention times, may well increase the recovery of gold (particularly when e.g. coarse gold, or unexposed gold, is present).


2020 ◽  
Vol 01 ◽  
Author(s):  
Henrik Jensen ◽  
Pernille D. Pedersen

Aims: To evaluate the real-life effect of photocatalytic surfaces on the air quality at two test-sites in Denmark. Background: Poor air quality is today one of the largest environmental issues, due to the adverse effects on human health associated with high levels of air pollution, including respiratory issues, cardiovascular disease (CVD), and lung cancer. NOx removal by TiO2 based photocatalysis is a tool to improve air quality locally in areas where people are exposed. Methods: Two test sites were constructed in Roskilde and Copenhage airport. In Roskilde, the existing asphalt at two parking lots was treated with TiO2 containing liquid and an in-situ ISO 22197-1 test setup was developed to enable in-situ evaluation of the activity of the asphalt. In CPH airport, photocatalytic concrete tiles were installed at the "kiss and fly" parking lot, and NOx levels were continuously monitored in 0.5 m by CLD at the active site and a comparable reference site before and after installation for a period of 2 years. Results: The Roskilde showed high stability of the photocatalytic coating with the activity being largely unchanged over a period of 2 years. The CPH airport study showed that the average NOx levels were decreased by 12 % comparing the before and after NOx concentrations at the active and reference site. Conclusion: The joined results of the two Danish demonstration projects illustrate a high stability of the photocatalytic coating as well as a high potential for improvements of the real-life air quality in polluted areas.


Agriculture ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 125
Author(s):  
Monier M. Abd El-Ghani ◽  
Ashraf S. A. El-Sayed ◽  
Ahmed Moubarak ◽  
Rabab Rashad ◽  
Hala Nosier ◽  
...  

Astragalus L. is one of the largest angiosperm complex genera that belongs to the family Fabaceae, subfamily Papilionoideae or Faboideae under the subtribe Astragalinae of the tribe Galegeae. The current study includes the whole plant morphology, DNA barcode (ITS2), and molecular marker (SCoT). Ten taxa representing four species of Astragalus were collected from different localities in Egypt during the period from February 2018 to May 2019. Morphologically, identification and classification of collected Astragalus plants occurred by utilizing the light microscope, regarding the taxonomic revisions of the reference collected Astragalus specimens in other Egyptian Herbaria. For molecular validation, ten SCoT primers were used in this study, producing a unique banding pattern to differentiate between ten samples of Astragalus taxa which generated 212 DNA fragments with an average of 12.2 bands per 10 Astragalus samples, with 8 to 37 fragments per primer. The 212 fragments amplified were distributed as 2 monomorphic bands, 27 polymorphic without unique bands, 183 unique bands (210 Polymorphic with unique bands), and ITS2 gene sequence was showed as the optimal barcode for identifying Astragalus L. using BLAST searched on NCBI database, and afterward, analyzing the chromatogram for ITS region, 10 samples have been identified as two samples representing A. hauarensis, four samples representing A. sieberi, three samples representing A. spinosus and one sample representing A. vogelii. Based on the ITS barcode, A. hauarensis RMG1, A. hauarensis RMG2, A. sieberi RMG1, A. sieberi RMG2, A. sieberi RMG3, A. sieberi RMG4, A. spinosus RMG1, A. spinosus RMG2, A. spinosus RMG3, A. vogelii RMG were deposited into GenBank with accession # MT367587.1, MT367591.1, MT367593.1, MT367585.1, MT367586.1, MT367588.1, MT160347.1, MT367590.1, MT367589.1, MT367592.1, respectively. These results indicated the efficiency of SCoT markers and ITS2 region in identifying and determining genetic relationships between Astragalus species.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2249
Author(s):  
Malgorzata Kucharska ◽  
Barbara Frydrych ◽  
Wiktor Wesolowski ◽  
Jadwiga A. Szymanska ◽  
Anna Kilanowicz

Sandalwood oils are highly desired but expensive, and hence many counterfeit oils are sold in high street shops. The study aimed to determine the content of oils sold under the name sandalwood oil and then compare their chromatographic profile and α- and β santalol content with the requirements of ISO 3518:2002. Gas chromatography with mass spectrometry analysis found that none of the six tested “sandalwood” oils met the ISO standard, especially in terms of α-santalol content. Only one sample was found to contain both α- and β-santalol, characteristic of Santalum album. In three samples, valerianol, elemol, eudesmol isomers, and caryophyllene dominated, indicating the presence of Amyris balsamifera oil. Another two oil samples were found to be synthetic mixtures: benzyl benzoate predominating in one, and synthetic alcohols, such as javanol, polysantol and ebanol, in the other. The product label only gave correct information in three cases: one sample containing Santalum album oil and two samples containing Amyris balsamifera oil. The synthetic samples described as 100% natural essential oil from sandalwood are particularly dangerous and misleading to the consumer. Moreover, the toxicological properties of javanol, polysantol and ebanol, for example, are unknown.


Sign in / Sign up

Export Citation Format

Share Document