Methane emissions from lactating and non-lactating dairy cows and growing cattle fed fresh pasture

2017 ◽  
Vol 57 (4) ◽  
pp. 643 ◽  
Author(s):  
Arjan Jonker ◽  
German Molano ◽  
John Koolaard ◽  
Stefan Muetzel

Currently, a fixed methane (CH4) emission factor is used for calculating total CH4 emissions from cattle in the national greenhouse gas inventory of New Zealand, independent of diet composition, cattle class (beef, dairy) or physiological state (growing, lactating, non-lactating). The objectives of this study were to determine CH4 emissions from lactating and non-lactating dairy cows (118 dairy cows; 81 lactating and 37 non-lactating, over 10 periods) and growing dairy heifers (12 measured twice) fed 100% fresh pasture forage in respiration chambers, which in combination with the published data of beef cattle (36 measured twice) fed fresh pasture were used to determine the relationship between CH4 emissions and dry matter intake (DMI), feed quality, cattle class (dairy vs beef) and physiological state (lactating, non-lactating and growing). Before regression analysis the dominant variables (DMI, CH4) needed to be transformed using natural logarithms (Ln) to make the variation in CH4 emissions more homogeneous across the range of data (i.e. stabilise the variance). Over all periods, average DMI ranged from 3.1 to 13.9 kg/day, average CH4 production from 64 to 325 g/day and average CH4 yield from 21.4 to 26.5 g/kg DMI. The DMI alone explained 90.8% of the variation in CH4 production (LnCH4 (g/day) = 3.250 + 0.9487 × LnDMI). Regression was improved to a minor extent (<3%, with associated increased prediction error) by including physiological status, cattle class or dietary composition in the model, in addition to LnDMI, on LnCH4 production. In conclusion, DMI alone was the strongest predictor for CH4 emissions from cattle fed fresh pasture with minor but irrelevant improvements in the prediction when considering pasture quality, cattle class or physiological status.

2017 ◽  
Vol 57 (1) ◽  
pp. 81 ◽  
Author(s):  
T. M. Storlien ◽  
E. Prestløkken ◽  
K. A. Beauchemin ◽  
T. A. McAllister ◽  
A. Iwaasa ◽  
...  

The main objective of this study was to investigate the effect of supplementing a pasture diet with crushed rapeseed on enteric methane (CH4) emissions from lactating dairy cows. The experiment was conducted as a crossover design using eight multiparous lactating Norwegian red dairy cows [(means ± s.d.) 548 ± 52 kg bodyweight, 38 ± 14 days in milk and 35 ± 3.7 kg milk/day, at the start of the experiment] maintained in two groups and fed two diets in two periods with the second period extended (18 days) to investigate the persistence of the CH4 response. Four of the eight cows were fitted with a rumen cannula with two cannulated cows assigned to each group. Cows were maintained on pasture (24 h/day) with access to 9 kg/day of concentrate containing 10% crushed rapeseed (RSC) or a control concentrate (CC). Dietary fat content was 63 g/kg dry matter for RSC and 42 g/kg dry matter for CC. The CH4 production was measured for five consecutive days in each period using the sulfur hexafluoride tracer gas technique. Compared with CC, RSC caused a reduction in enteric CH4 emission (221 vs 251 g/day and 8.1 vs 9.0 g/kg of energy-corrected milk), and this response persisted in the extension period. Cows fed RSC had higher milk yield compared with cows fed CC (31.7 vs 29.6 kg/day). However, milk fat and protein content were lower in milk from cows fed RSC than CC. Therefore, energy-corrected milk was not affected by treatment. Feeding RSC lowered milk fat content of palmitic acid compared with CC. The study showed that adding crushed RSC to the diet can be an effective means of reducing CH4 emissions from lactating dairy cows on pasture, without negatively affecting milk production.


2008 ◽  
Vol 48 (2) ◽  
pp. 124 ◽  
Author(s):  
J. B. Vlaming ◽  
N. Lopez-Villalobos ◽  
I. M. Brookes ◽  
S. O. Hoskin ◽  
H. Clark

Several studies on methane (CH4) emissions have focussed on selecting high and low CH4-emitting animals. One challenge faced by this work is the lack of consistency, or repeatability, in animal rankings over time. Repeatability for individual animals over time needs to be high to reliably detect high and low CH4-emitting animals. A possible explanation for the lack of repeatability is a relatively high within-animal variation in daily CH4 emissions, meaning that animals could then change their ranking when compared at different points in time. An experiment was undertaken with four non-lactating dairy cattle to assess the within- and between-animal variation in CH4 emissions over time when measured using the sulfur hexafluoride (SF6) tracer technique. Two contrasting diets were fed to the cattle at maintenance energy levels: lucerne silage (diet 1) and a cereal + lucerne + straw mixed ration diet (diet 2). Daily CH4 measurements were undertaken for 23 days on diet 1 and 30 days on diet 2. There was a significant (P < 0.001) difference between diet 1 and diet 2 in daily CH4 production, with mean (±s.e.) production of 124.3 (11.1) g CH4/day from diet 1 and 169.8 (±11.0) g CH4/day from diet 2. Lower CH4 yield (g CH4/kg dry matter intake) was recorded on diet 1 (22.8 ± 2.0) than diet 2 (32.0 ± 2.0). Cows differed significantly (P < 0.05) from one another in daily CH4 yield (diet 1: cow 1 = 19.4 ± 0.6, cow 2 = 22.2 ± 0.8, cow 3 = 23.2 ± 0.7, cow 4 = 25.4 ± 0.6; diet 2: cow 1 = 26.0 ± 0.7, cow 2 = 36.4 ± 0.7, cow 3 = 29.3 ± 0.7, cow 4 = 36.6 ± 0.7). Variances for daily CH4 yield were smaller for diet 1 (within animal = 6.91, between animals = 6.23) than for diet 2 (within animal = 10.09, between animals = 27.79). Estimates of repeatability (variation between animals/total variation) for daily CH4 yield were 47 and 73% in diet 1 and 2, respectively. Coefficients of variation in average daily CH4 emissions in this experiment ranged from 8 to 18% despite the fact that each animal received the same quantity and quality of feed each day. While further research is required, the high within-animal variability in CH4 emissions measured using the SF6 tracer technique may explain why there has been difficulty in obtaining consistent rankings in CH4 yields when animals are measured on multiple occasions. The results also suggest that the SF6 tracer technique may exaggerate apparent between animal differences in CH4 emissions.


2017 ◽  
Vol 57 (7) ◽  
pp. 1445 ◽  
Author(s):  
Arjan Jonker ◽  
David Scobie ◽  
Robyn Dynes ◽  
Grant Edwards ◽  
Cecile De Klein ◽  
...  

Fodder beet (Beta vulgaris L.) has a very high readily fermentable carbohydrate concentration, which could affect rumen fermentation and reduce enteric methane (CH4) emissions. The objective of the current study was to estimate CH4 emissions from dry dairy cows grazing either fodder beet supplemented with perennial ryegrass (Lolium perenne L.)-dominated pasture silage (6 kg DM/cow/day; FB+Sil) or forage kale (Brassica oleracea L.) supplemented with barley (Hordeum vulgare L.) straw (3 kg DM/cow/day; kale+Str; dry cows, Experiment 1), and from dairy cows in early lactation grazing perennial ryegrass-dominated pasture alone (pasture) or supplemented with fodder beet bulbs (3 kg DM/cow/day; past+FB; lactating cows; Experiment 2). Methane measurements were performed using GreenFeed units (C-Lock Inc., Rapid City, SD, USA) for 40 days in August–September 2015 (Experiment 1) and for 22 days in November–December 2015 (Experiment 2), from 45 and 31 Holstein–Friesian × Jersey dairy cows in Experiments 1 and 2, respectively. Dry cows grazing FB+Sil in Experiment 1 produced 18% less CH4 (g/day) and had 28% lower CH4 yield (g/kg DM intake; P < 0.001) than did cows grazing kale+Str. Lactating cows grazing past+FB in Experiment 2 produced 18% less CH4 and had 16% lower CH4 intensity (g/kg fat and protein-corrected milk production; P < 0.01) than did cows grazing pasture alone, while milk production and composition were similar for the two groups. In conclusion, feeding fodder beet at ~50% and 20% of the diet of dry and lactating dairy cows in pastoral systems can mitigate CH4 emissions.


1994 ◽  
Vol 58 (2) ◽  
pp. 181-187 ◽  
Author(s):  
R. J. Dewhurst ◽  
C. H. Knight

AbstractTwenty lactating dairy cows were used to investigate the relationship between the site of milk storage in the udder and the short-term response to thrice-daily milking. Cisternal and alveolar milk volumes were measured 8 h after an ordinary morning milking by catheter drainage and machine milking with oxytocin respectively. The response to thrice-daily milking was assessed using a half-udder technique and the relative milk yields quotient (RMYQ). Over the first 7 days, both halves were milked twice daily (8/16 h intervals) and milk yields over the final 4 days of this period were higher for left fore/right hind (LF/RH) (12·4 (s.e. 0·85) kg/day) than for RF/LH (10·5 (s.e. 0·63) kg/day) which was milked after LF/RH throughout the experiment. Over the following week, LF/RH quarters were milked an additional time (8/8/8 h intervals) and yields over the final 4 days were increased (15•7 (s.e. 0·95) kg/day) compared with control quarters (9·8 (s.e. 0·73) kg/day). In a final 4-day period, animals were milked twice daily and half udder yields were 13·1 (s.e. 0·89) kg/day and 10•6 (s.e. 0·77) kg/day respectively. Differences between yields from the two halves of the udders were highly significant in all 3 weeks of the experiment (P < 0·001). Cistern milk yield as a proportion of total milk yield at 8 h (cistern proportion) averaged 0·170 (s.e. = 0·0275; range 0·020 to 0·334) and tended to be greater for multiparous (0·215, s.e. 0·0279) than for primiparous animals (0·118, s.e. 0·0437; P = 0·076). During the periods of twice-daily milking, the proportion of milk yielded from LF/RH quarters was not significantly related to cistern proportion (P = 0·70 and 0·43 for weeks 1 and 3 respectively). However the response to thrice-daily milking, assessed as RMYQ, was significantly related to cistern proportion both when changing up to, and down from, thrice-daily milking (P < 0·01). Animals with low cistern proportions showed larger responses to thrice-daily milking. There was a significant relationship (P < 0·05) between the responses on changing up to, and down from, thrice-daily milking. Primiparous animals tended to exhibit smaller declines on returning to twice-daily milking than multiparous animals with equivalent responses to thrice-daily milking.


2014 ◽  
Vol 54 (10) ◽  
pp. 1757 ◽  
Author(s):  
S. R. O. Williams ◽  
P. J. Moate ◽  
M. H. Deighton ◽  
M. C. Hannah ◽  
W. J. Wales

Methane (CH4) emissions from dairy cows are technically difficult and expensive to measure. Recently, some researchers have found correlations between the concentrations of specific fatty acids in milk fat and the CH4 emissions from cows that could obviate the need for direct measurement. In this research, data on individual cow CH4 emissions and concentration of caprylic acid (C8:0) and total C18 fatty acids in milk were collated from eight experiments involving 27 forage-based diets and 246 Holstein-Friesian dairy cows. Linear regressions between CH4 and both C8:0 and total C18 in milk were produced for published data and used to calculate 95% prediction regions for a new observation. The proportion of observed methane emissions from eight experiments that fell outside the 95% prediction region was 27.6% for the C8:0 model and 26.3% for the total C18 model. Neither model predicted CH4 emission well with Lin’s coefficient of concordance of less than 0.4 and the Nash–Sutcliffe efficiency coefficient of approximately zero for both the C8:0 and total C18 models. In addition, general linear model analysis showed significant differences between experiments in their intercepts (P < 0.001) and slopes (P < 0.001). It is concluded that the relationships tested cannot be used to accurately predict CH4 emissions when cows are fed a wide range of diets.


2016 ◽  
Vol 56 (3) ◽  
pp. 238 ◽  
Author(s):  
M. Arbre ◽  
Y. Rochette ◽  
J. Guyader ◽  
C. Lascoux ◽  
L. M. Gómez ◽  
...  

The SF6 tracer technique (SF6) and GreenFeed system (GF) are two methods for measuring enteric methane (CH4) emissions from cattle. Both methods estimate individual daily CH4 emissions from expired gas samples collected either continuously over 24 h in a canister (SF6) or several times a day during short-term periods (3–8 min) when cattle visit an automated head chamber (GF). The objective of this work was to study repeatability (R) of each method according to duration of measurement period as an indicator of their precision. The R of CH4 measurements was evaluated in two different trials using cows. For Experiment 1, the SF6 technique was used for 20 days in six non-lactating dairy cows fed a hay-based diet; for Experiment 2, the GF system was used for 91 days in seven lactating dairy cows fed a maize silage-based diet. The CH4 data were grouped by periods of 1–10 days (SF6) and 1–45 days (GF). The CH4 emissions averaged 23.6 ± 3.9 g/kg dry matter intake (DMI) for the SF6 and 17.4 ± 3.3 g/kg DMI for the GF on the measurement period. To achieve an R value of 0.70 for CH4 emissions (g/kg DMI), 3-day periods were necessary for SF6 and 17-day periods for GF. The R did not increase after 4-day periods for SF6 (R = 0.73), but increased for GF until 45-day periods (R = 0.90). In our experimental conditions and R = 0.70, the total number of cows necessary to detect a significant difference in CH4 emissions (g/kg DMI) between two treatments (e.g. diet) was similar for SF6 and GF.


Author(s):  
Puchun Niu ◽  
Angela Schwarm ◽  
Helge Bonesmo ◽  
Alemayehu Kidane ◽  
Bente Aspeholen Åby ◽  
...  

The aim of this study was to develop a basic model to predict enteric methane emission from dairy cows and to update operational calculations for the national inventory in Norway. Basic models were developed using a database with 63 treatment means from 19 studies. The database included records for enteric CH4 production (MJ/day), dry matter intake (DMI), and dietary nutrient composition. The basic models were evaluated against an external database (n=36, from ten studies) along with other extant models. When evaluated by low root mean square prediction errors and high concordance correlation coefficients, the developed basic models that included DMI, dietary concentrations of fatty acids and neutral detergent fiber performed slightly better in predicting CH4 emissions than extant models. In order to propose country-specific values for the CH4 conversion factor Ym (% of gross energy intake partitioned into CH4) and thus to carry out the national inventory for Norway, the existing operational model was updated for the prediction of Ym over a wide range of feeding situations using energy corrected milk and dietary concentrate share as predictor variables. Input values of Ym were updated based on the results from the basic models. The predicted Ym ranged from 6.22 to 6.72%. In conclusion, the prediction of CH4 production from dairy cows was improved with the help of newly published data, which enabled an update of the operational model for calculating the national inventory of CH4 in Norway.


2020 ◽  
Vol 60 (1) ◽  
pp. 96 ◽  
Author(s):  
Arjan Jonker ◽  
Peter Green ◽  
Garry Waghorn ◽  
Tony van der Weerden ◽  
David Pacheco ◽  
...  

Enteric methane (CH4) emissions and dry-matter intake (DMI) can be accurately and precisely measured in respiration chambers (RC), whereas automated head chambers (GreenFeed; GF) and the SF6 tracer method can provide estimates of CH4 emissions from grazing cattle. In New Zealand, most dairy cattle graze pasture and, under these conditions, DMI also has to be estimated. The objective of the current study was to compare the relationship between CH4 production and DMI of New Zealand dairy cattle fed forages using the following four measurement methods: RC with measured DMI (RC); sulfur hexafluoride (SF6) with measured DMI (SF6-DMI); SF6 with DMI estimated from prediction equations or indigestible markers (SF6); GF with measured or estimated DMI (GF). Data were collected from published literature from New Zealand trials with growing and lactating dairy cattle fed forage-based diets and data were analysed using a mixed-effect model. The intercept of the linear regression between CH4 production and DMI was not significantly different from zero and was omitted from the model. However, residual variance (observed–predicted values) increased with an increasing DMI, which was addressed by log-transforming CH4 per unit of DMI and this model was used for final data analysis. The accuracy of the four methods for predicting log CH4 per unit of DMI was similar (P = 0.55), but the precision (indicated by residuals) differed (P &lt; 0.001) among methods. The residual standard deviations for SF6, GF and SF6-DMI were 4.6, 3.4 and 2.1 times greater than the residuals for RC. Hence, all methods enabled accurate prediction of CH4 per unit of DMI, but methodology for determining both CH4 and DMI affected their precision (residuals).


1998 ◽  
Vol 1998 ◽  
pp. 22-22 ◽  
Author(s):  
B. Stefanon ◽  
L. Gruber ◽  
S. Moscardini ◽  
V. Volpe ◽  
P. Susmel

The contribution of rumen microorganisms to the protein absorbed in the intestine is a key factor to evaluate diets for ruminants, and the urinary excretion of purine derivatives (PD) has recently been proposed to estimate rumen microbial protein synthesis in cows (Verbic et al., 1990). This study refers to the relationship between PD excretion and the microbial nitrogen estimated according to recent protein systems for ruminants.


2016 ◽  
Vol 56 (1) ◽  
pp. 116 ◽  
Author(s):  
J. P. Goopy ◽  
D. L. Robinson ◽  
R. T. Woodgate ◽  
A. J. Donaldson ◽  
V. H. Oddy ◽  
...  

This study was designed to screen a large number of sheep to identify individuals with high and low methane (CH4) production, and to estimate repeatability and heritability of CH4 emissions in sheep, utilising portable accumulation chambers (PAC) designed for in-field use. Mature ewes (n = 710) selected from a research flock with known sires had their CH4 production over 1 h measured in PAC [CH4 (g1h)]. Individuals with High (n = 103) or Low (n = 104) CH4 (g1h), adjusted for liveweight (LW), were selected and re-measured on three occasions 1–4 months later, at another site with more abundant and better quality pasture. Mean of the selected (207) ewes CH4 (g1h) emissions were ~50% higher than at the first measurement site (0.66 g vs 0.42 g). LW was a significant correlate of CH4 production (r = 0.47). Correlations between CH4 (g1h) for the three PAC measurements at Site 2, before adjusting for LW ranged from 0.44 to 0.55. After adjusting for the effect of LW, repeatability was 0.33 at the first and 0.43 at the second site. The correlation between estimates of an animal’s emissions at the first and second sites, adjusted for LW, was 0.24. Initial CH4 production of the selected High group was 32% greater than the Low group (P < 0.0001). On re-measurement there was still a significant difference (9–15%, P < 0.006) between Low and High groups. The initial estimate of heritability of CH4 (g1h), based on variation between the ewes’ sires (0.13), was not maintained across the two sites. This may be due to genotype × environment interactions. We postulate that aspects of rumen physiology, which modulate CH4 production, could be expressed differently in different nutritional environments. Our results indicate that field use of PAC to screen sheep populations for CH4 production is both robust and repeatable. However, further investigations are required into the relationship between CH4 output of individual animals in PAC compared with the more controlled conditions in respiration chambers.


Sign in / Sign up

Export Citation Format

Share Document