Septoria nodorum blotch resistance in Aegilops tauschii and its expression in synthetic amphiploids

2001 ◽  
Vol 52 (12) ◽  
pp. 1393 ◽  
Author(s):  
R. Loughman ◽  
E. S. Lagudah ◽  
M. Trottet ◽  
R. E. Wilson ◽  
A. Mathews

A collection of 433 Aegilops tauschii was screened for response to infection with Stagonospora nodorum. Resistance similar or marginally superior to the range observed in spring wheat genotypes was readily identified. Three lines, RL5271, Aus18911, and Aus21712, were resistant to a range of pathogen isolates and were similar in resistance to a highly resistant French line, No.33. Accessions of Ae. tauschii assessed as resistant or susceptible as seedlings had corresponding reactions when tested as adult plants, with resistance being commonly expressed as restricted lesion development. Infection frequency differed between some Ae. tauschii lines. Seedling resistance in synthetic bread wheats was expressed partially or not at all depending on both the tetraploid and the tetraploid/Ae. tauschii combination. Assessment of adult responses among a range of synthetics showed occasional expression of moderate resistance around the level observed among reference bread wheat cultivars of similar maturity. Disease escape associated with late maturity was common. One synthetic wheat, #231, derived from a resistant Ae. tauschii, exhibited low adult disease expression associated with late maturity. This line was resistant in seedling tests and seedling resistance was dominant in F1 hybrids to bread wheat.

2008 ◽  
Vol 59 (5) ◽  
pp. 432 ◽  
Author(s):  
J. P. Thompson

Root-lesion nematodes (Pratylenchus thornei Sher and Allen and P. neglectus (Rensch) Filipijev and Schuurmans Stekhoven) cause substantial yield loss to wheat crops in the northern grain region of Australia. Resistance to P. thornei for use in wheat breeding programs was sought among synthetic hexaploid wheats (2n = 6x = 42, AABBDD) produced through hybridisations of Triticum turgidum L. subsp. durum (Desf.) Husn (2n = 4x = 28, AABB) with Aegilops tauschii Coss. (2n = 2x = 14, DD). Resistance was determined for the synthetic hexaploid wheats and their durum and Ae. tauschii parents from the numbers of nematodes in the roots of plants grown for 16 weeks in pots of pasteurised soil inoculated with P. thornei. Fifty-nine (32%) of 186 accessions of synthetic hexaploid wheats had lower numbers of nematodes than Gatcher Selection 50a (GS50a), a partially resistant bread wheat. Greater frequencies of partial resistance were present in the durum parents (72% of 39 lines having lower nematode numbers than GS50a) and in the Ae. tauschii parents (55% of 53 lines). The 59 synthetic hexaploids were re-tested in a second experiment along with their parents. In a third experiment, 11 resistant synthetic hexaploid wheats and their F1 hybrids with Janz, a susceptible bread wheat, were tested and the F1s were found to give nematode counts intermediate between the respective two parents. Synthetic hexaploid wheats with higher levels of resistance resulted from hybridisations where both the durum and Ae. tauschii parents were partially resistant, rather than where only one parent was partially resistant. These results suggest that resistance to P. thornei in synthetic hexaploid wheats is polygenic, with resistances located both in the D genome from Ae. tauschii and in the A and/or B genomes from durum. Five synthetic hexaploid wheats were selected for further study on the basis of (1) a high level of resistance to P. thornei of the synthetic hexaploid wheats and of both their durum and Ae. tauschii parents, (2) being representative of both Australian and CIMMYT (International Maize and Wheat Improvement Centre) durums, and (3) being representative of the morphological subspecies and varieties of Ae. tauschii. These 5 synthetic hexaploid wheats were also shown to be resistant to P. neglectus, whereas GS50a and 2 P. thornei-resistant derivatives were quite susceptible. Results of P. thornei resistance of F1s and F2s from a half diallel of these 5 synthetic hexaploid wheats, GS50a, and Janz from another study indicate polygenic additive resistance and better general combining ability for the synthetic hexaploid wheats than for GS50a. Published molecular marker studies on a doubled haploid population between the synthetic hexaploid wheat with best general combining ability (CPI133872) and Janz have shown quantitative trait loci for resistance located in all 3 genomes. Synthetic hexaploid wheats offer a convenient way of introgressing new resistances to P. thornei and P. neglectus from both durum and Ae. tauschii into commercial bread wheats.


2019 ◽  
Vol 7 (6) ◽  
pp. 809-818 ◽  
Author(s):  
Wenjing Hu ◽  
Xinyao He ◽  
Susanne Dreisigacker ◽  
Carolina P. Sansaloni ◽  
Philomin Juliana ◽  
...  

2021 ◽  
Vol 13 (10) ◽  
pp. 45
Author(s):  
Naheif E. Mohamed ◽  
Ismail M. Bedawy ◽  
Yasser A. M. Hefny

To study genetic analysis of some physiological traits of drought stress in wheat using diallel techniques, an experiment was performed on ten bread wheat genotypes as parents and their 45 F1 hybrids in a randomized complete block design with three replicates under well-watered and drought stress conditions at the Research Farm of Faculty of Agriculture, Sohag University, Egypt during season of 2018/19. The results showed significant differences between the genotypes (G), Parents (P), F1 crosses, P vs. F1, GCA and SCA under well-watered and drought stress in the flag leaf area (FLA), flag leaf chlorophyll content (FLCC) and flag leaf temperature (FLT), except FLCC for F1 crosses exhibited insignificant differences. The significant differences were found in the interaction of SCA × Env., in all studied traits and GCA × Env., for FLT., indicating the involvement of both additive and dominance gene action in their inheritance. The most desirable heterotic effects were considered as the largest positive heterosis estimates for FLA and FLCC, and the lowest negative for FLT. The parent numbers P9, P8 and P3 were the best general combiner for FLA under normal irrigation and drought stress. While the parents P2, P7 and P9 were the best general combiner for FLCC, under normal irrigation and (P1, P2 and P3) under drought stress. Therefor the parents P1, P4 and P5 were the best general combiner for FLT under normal irrigation, also the P3, P4 and P5 were the best general combiner for FLT under drought stress conditions. Under normal irrigation and drought stress conditions as well as the combined data, the additive genetic components of variation (VA) in F1 ’s was much greater than dominance component (VD), as expressed by the (VA/VD) ratio which was more than unity for the FLA, and FLT under normal irrigation and their combined. This indicates that the additive gene effects in F1 crosses are more important than dominance and plays the major role in the inheritance of these studied traits.


2012 ◽  
Vol 92 (2) ◽  
pp. 355-361 ◽  
Author(s):  
J. B. Thomas ◽  
R. J. Graf

Thomas, J. B. and Graf, R. J. 2012. AC Readymade and AC Tempest, selections from Redwin hard red winter wheat. Can. J. Plant Sci. 92: 355–361. AC Readymade and AC Tempest are hard red winter wheat (Triticum aestivum L.) cultivars selected from the Montana cultivar ‘Redwin’ to conform to the kernel visual distinguishability requirements of the Canada Western Red Winter (CWRW) wheat class. AC Readymade and AC Tempest were registered in 1991 and 1999, respectively, following 3 yr of testing in the Western Winter Wheat Cooperative registration trials relative to various checks including Winalta, Norstar, CDC Clair and CDC Osprey. The survival characteristics of these cultivars demonstrated that they were well-suited to the relatively mild winter climate of southern Alberta. In this region of the prairies, AC Tempest had 4% higher grain yield than AC Readymade and was not significantly different from the other checks except Winalta, which was lower yielding. Both cultivars displayed relatively late maturity, moderate height, exceptional straw strength, high test weight, large kernels, high grain protein content and moderate resistance to common bunt. AC Tempest had significantly higher flour yield than AC Readymade.


Genetica ◽  
2015 ◽  
Vol 143 (6) ◽  
pp. 671-680 ◽  
Author(s):  
Golam Rasul ◽  
Karl D. Glover ◽  
Padmanaban G. Krishnan ◽  
Jixiang Wu ◽  
William A. Berzonsky ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 253-258
Author(s):  
S.O. Kovalchuk ◽  
S.I. Voloschuk ◽  
N.A. Kozub

The aim of work was the estimation of valuable traits of bread wheat breeding lines, obtained from interspecies crosses with wild Aegilops and Triticum species growing in a condition of the Forest-Steppe of Ukraine. We used the seed proteins electrophoresis in PAAG for confirmation of the presence of rye seed storage components in the wheat parental lines genomes. The biochemical compositions of seeds had determined by the infrared spectroscopy method. As a result of researching from the set of 600 breeding lines were selected best lines with increased grain yield from 1 m2, with high protein content in grain, disease resistance, and winter hardiness significantly exceeded the standard variety Polesskaya-90. All lines have high and moderate resistance against diseases: Powdery Mildew, Brown Rust, Septoria Blotch. Based on obtained data had selected breeding lines, which were promising sources of single and complex agronomically valuable traits for bread wheat breeding and genetic researches.


2021 ◽  
Vol 25 (7) ◽  
pp. 740-745
Author(s):  
E. S. Skolotneva ◽  
V. N. Kelbin ◽  
V. P. Shamanin ◽  
N. I. Boyko ◽  
V. A. Aparina ◽  
...  

Present-day wheat breeding for immunity exploits extensively closely related species from the family Triticeae as gene donors. The 2NS/2AS translocation has been introduced into the genome of the cultivated cereal Triticum aestivum from the wild relative T. ventricosum. It contains the Lr37, Yr17, and Sr38 genes, which support seedling resistance to the pathogens Puccinia triticina Eriks., P. striiformis West. f. sp. tritici, and P. graminis Pers. f. sp. tritici Eriks. & E. Henn, which cause brown, yellow, and stem rust of wheat, respectively. This translocation is present in the varieties Trident, Madsen, and Rendezvous grown worldwide and in the Russian varieties Morozko, Svarog, Graf, Marquis, and Homer bred in southern regions. However, the Sr38 gene has not yet been introduced into commercial varieties in West Siberia; thus, it remains of practical importance for breeding in areas where populations of P. graminis f. sp. tritici are represented by avirulent clones. The main goal of this work was to analyze the frequency of clones (a)virulent to the Sr38 gene in an extended West Siberian collection of stem rust agent isolates. In 2019–2020, 139 single pustule isolates of P. graminis f. sp. tritici were obtained on seedlings of the standard susceptible cultivar Khakasskaya in an environmentally controlled laboratory (Institute of Cytology and Genetics SB RAS) from samples of urediniospores collected on commercial and experimental bread wheat fields in the Novosibirsk, Omsk, Altai, and Krasnoyarsk regions. By inoculating test wheat genotypes carrying Sr38 (VPM1 and Trident), variations in the purity of (a)virulent clones were detected in geographical samples of P. graminis f. sp. tritici. In general, clones avirulent to Sr38 constitute 60 % of the West Siberian fungus population, whereas not a single virulent isolate was detected in the Krasnoyarsk collection. The Russian breeding material was screened for sources of the stem rust resistance gene by using molecular markers specific to the 2NS/2AS translocation. A collection of hybrid lines and varieties of bread spring wheat adapted to West Siberia (Omsk SAU) was analyzed to identify accessions promising for the region. The presence of the gene was postulated by genotyping with specific primers (VENTRIUP-LN2) and phytopathological tests with avirulent clones of the fungus. Dominant Sr38 alleles were identified in Lutescens 12-18, Lutescens 81-17, Lutescens 66-16, Erythrospermum 79/07, 9-31, and 8-26. On the grounds of the composition of the West Siberian P. graminis f. sp. tritici population, the Sr38 gene can be considered a candidate for pyramiding genotypes promising for the Novosibirsk, Altai, and Krasnoyarsk regions. 


2021 ◽  
Author(s):  
Yongchao Hao ◽  
Ming Hao ◽  
Hongwei Wang

Abstract Background: Bread wheat (Triticum aestivum) is an important and fundamental cereal worldwide. With increasingly severe environmental stress, it is very important to mine stress-resistant genes for wheat breeding. Dehydrin (DHN) genes are primary candidates because they are involved in the response to many stressors. Results: Here, a genome-wide analysis of this gene family was performed on the genomes of wheat and its three relatives. A total of 55 DHN genes in Triticum aestivum, 31 in Triticum dicoccoides, 15 in Triticum urartu, and 16 in Aegilops tauschii were identified. The phylogenetic, synteny, sequence and protein structure analyses showed that the DHN genes were divided into five groups, Genes in the same group share similar conserved motifs, protein structures, and potential functions. The tandem TaDHN genes responded strongly to drought, cold and high salinity stresses, while the non-tandem genes were responded weakly to all stress conditions. Further, multiple DHN proteins cooperation maybe an important way to prevent plants from abiotic stress according to the interaction network analysis. Conclusions: Conserved, duplicated DHN genes may have played an important role in the adaptation of wheat to a variety of conditions, hence, contributing to the distribution of bread wheat as a global staple food. This research illuminates the contributions of DHN genes to abiotic stresses in Triticeae species and offers helpful information for further functional study of DHN genes in these crops.


Sign in / Sign up

Export Citation Format

Share Document