Response of wheat genotypes efficient in P utilisation and genotypes responsive to P fertilisation to different P banding depths and watering regimes

2003 ◽  
Vol 54 (1) ◽  
pp. 59 ◽  
Author(s):  
G. R. Valizadeh ◽  
Z. Rengel ◽  
A. W. Rate

The capacity of wheat roots to lift water from subsoil with high moisture content into dry topsoil (hydraulic lift) and the subsequent impact on P uptake from dry topsoil are poorly understood. Two experiments were set up to test the capacity of 4 wheat genotypes differing in P efficiency to take up P from the fertiliser banded in dry topsoil (with wet subsoil). The interactions among genotypes, banding depths, and watering regimes (whole-profile or subsoil-only watering) were also characterised. The root system increased soil water content from 64 to 90 g/kg soil around the P fertiliser band by taking up water in the subsoil and releasing it into the dry topsoil during the night. Phosphorus applied as a band at 20 mg P/kg soil in dry topsoil (5 cm deep) significantly increased P uptake and shoot weight compared with a nil P control. Westonia and Gutha genotypes (efficient in P utilisation, based on dry matter produced per unit of P taken up) had higher shoot weights than Aroona and Wawht 2074 (genotypes responsive to P fertilisation, based on dry matter produced per unit of P fertiliser applied). Greater growth of wheat genotypes occurred in the treatment with P fertiliser banded at a depth of 5 cm compared with 15 cm in the whole-profile watering treatment, but no difference between banding depths was noted in the subsoil-only watering treatment. Wheat genotypes responsive to P fertilisation increased P uptake and shoot weight at the 5-cm P banding depth and the whole-profile watering treatment compared with genotypes efficient in P utilisation. Phosphorus-utilisation-efficient genotypes increased shoot growth more than other genotypes in the subsoil-only watering treatment. It can be concluded that roots of various wheat genotypes lift water from wet subsoil into the dry topsoil (hydraulic lift). Phosphorus fertiliser banded at 5-cm depth in dry topsoil increased P uptake and wheat growth due to the presence of hydraulically lifted water. Genotypes that are efficient in utilising P increased shoot weight more than genotypes responsive to P fertilisers in the subsoil-only watering treatment. In contrast, P-responsive genotypes increased shoot growth more than P-utilisation-efficient genotypes when P fertiliser was banded at 5-cm depth, and a whole-profile watering regime was imposed.

2004 ◽  
Vol 61 (2) ◽  
pp. 216-223 ◽  
Author(s):  
Cynthia Torres de Toledo Machado ◽  
Ângela Maria Cangiani Furlani

The activity of the enzyme phosphatase (P-ase) is a physiological characteristic related to plant efficiency in relation to P acquisition and utilization, and is genetically variable. As part of a study on maize genotype characterization in relation to phosphorus (P) uptake and utilization efficiency, two experiments were set up to measure phosphatase (P-ase) activity in intact roots of six local and improved maize varieties and two sub-populations. Plants were grown at one P level in nutrient solution (4 mg L-1) and the P-ase activity assay was run using 17-day-old plants for varieties and 24-day-old plants for subpopulations. Shoot and root dry matter yields and P concentrations and contents in plant parts were determined, as well as P-efficiency indexes. Root P-ase activity differed among varieties, and highest enzimatic activities were observed in two local varieties -'Catetão' and 'Caiano' -and three improved varieties -'Sol da Manhã', 'Nitrodente' and 'BR 106'. 'Carioca', a local variety, had the lowest activity. Between subpopulations, 'ND2', with low yielding and poorly P-efficient plants, presented higher root P-ase activity as compared to 'ND10', high yielding and highly P-efficient plants. In general, subpopulations presented lower P-ase activities as compared to varieties. Positive and/or negative correlations were obtained between P-ase activity and P-efficiency characteristics, specific for the genotypes, not allowing inference on a general and clear association between root-secreted phosphatase and dry matter production or P acquisition. Genotypic variability must be known and considered before using P-ase activity as an indicator of P nutritional status, or P tolerance, adaptation and efficiency under low P conditions.


1989 ◽  
Vol 25 (1) ◽  
pp. 51-61 ◽  
Author(s):  
R. C. Nageswara Rao ◽  
L. P. Simmonds ◽  
S. N. Azam-Ali ◽  
J. H. Williams

SUMMARYThe growth of roots and shoots was measured in stands of groundnut grown at a number of populations on stored water in central India. Total weight and length of roots per unit land area increased with population density, but the proportional increases were much less than for shoot weight. Consequently the root:total weight ratio increased from 0.3 in the densest stand to almost 0.5 in the widely spaced crop. The denser stands produced a greater proportion of their roots at depth. In wide rows there was little change in rooting density across the inter-row space.Total dry matter per unit land area increased with population, although the weight per plant was less in denser stands. Although the crops were harvested prematurely, pod yield per unit land area, unlike total dry matter, was no greater in dense stands than in more widely spaced crops. The greatest number of pods per unit land area was recorded at an intermediate population density.


1992 ◽  
Vol 43 (3) ◽  
pp. 479 ◽  
Author(s):  
JB Baon ◽  
SE Smith ◽  
AM Alston ◽  
RD Wheeler

The influence of indigenous vesicular-arbuscular mycorrhizal infection on the assessment of phosphorus (P) efficiency in wheat ( Triticum aestivum L. cv. Spear), barley (Hordeum vulgare L. cv. Galleon) and rye (Secale cereale L. cv. S.A. Commercial) was studied. P efficiency was defined in terms of uptake (mg P pot-1) or utilization (g dw mg-1 P). Experiments were set up with two soils which had low concentrations of plant available P and had been used in a previous study of P efficiency in cereals. Numbers of spores and infective propagules were significantly different in the two soils. In the soil with low propagule density, the extent of mycorrhizal infection of barley, wheat and rye increased with time. Twenty days after transplanting 3-day old seedlings, there was no difference in the percentage of root length infected (2.0%), but at 40 days, wheat (22.4%) and barley (19.3%) had significantly greater percentage of infected root than had rye (10.7%). At 30 days, wheat had a significantly higher percentage of root length infected than barley. In the soil with high propagule density, infection occurred more rapidly, so that the percentage of root length of wheat and barley infected was not significantly different at the three times of harvest. However, infection of rye significantly increased with time and was higher (31.8%) than that of barley (19.8%) at the final harvest. Mycorrhizal infection was positively correlated with efficiency of P uptake in barley, but not in wheat or rye. However, efficiency in utilization of P by barley and wheat was negatively correlated with infection. The colonization of cereals by the indigenous mycorrhizal fungi decreased with the addition of P to the soils. The results of these studies indicate the potential importance of mycorrhizal infection in assessment of P efficiency in cereals.


2004 ◽  
Vol 61 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Cynthia Torres de Toledo Machado ◽  
Ângela Maria Cangiani Furlani

Interspecific and intraspecific differences in the efficiency of utilization of soil phosphorus (P) are explained, in part, by plant morphological and physiological variations, which characterize the plant for nutrient acquisition. As part of a study on maize genotypes characterization for P-uptake and use efficiency, kinetic parameters of P uptake and root morphological characters were evaluated for six local and improved maize varieties, grown in nutrient solution. The kinetic parameters related to P influx were: maximal transport rate (Vmax), the Michaelis-Menten constant (Km), and the external concentration when net uptake is zero (Cmin). Measured root morphological characters were: root length, radius, and surface area. Shoot and root dry matter yield and the P content in these parts were also determined. Diferences among varieties were observed in the kinetic parameters Vmax and Km, root length and in root/shoot dry matter ratio. Lower Km values were better indicatives of P uptake ability of the varietes and were significantly correlated to higher dry matter production and P-efficiency index.


2002 ◽  
Vol 53 (3) ◽  
pp. 295 ◽  
Author(s):  
L. D. Osborne ◽  
Z. Rengel

One hundred and six Australian cereal genotypes, including wheat, triticale, and rye, were screened for their ability to take up and utilise soluble phosphorus at different rates of P supply. Plants were screened in outdoor tanks irrigated at regular intervals with nutrient solution amended with 3 rates of P. Genotypes were ranked according to the following 3 criteria: shoot growth at deficient P supply, the relative shoot growth rate (dry weight at deficient P/dry weight at sufficient P), and phosphorus utilisation efficiency (amount of dry matter produced per unit of P accumulated in shoots corrected for seed P content). Considerable genotypic variation in growth and P utilisation efficiency was found in the cereal germplasm. Rye and triticale were generally more efficient in taking up and utilising P than wheat at low rates of P supply. Wheat genotypes Egret and Durati showed relatively high, and genotype Cadoux relatively low, P efficiency.


2009 ◽  
Vol 325 (1-2) ◽  
pp. 263-275 ◽  
Author(s):  
X. Wang ◽  
C. Tang ◽  
C. N. Guppy ◽  
P. W. G. Sale

2005 ◽  
Vol 62 (2) ◽  
pp. 159-164 ◽  
Author(s):  
Rossini Mattos Corrêa ◽  
Clístenes Williams Araújo do Nascimento ◽  
Silvana Keely de Sá Souza ◽  
Fernando José Freire ◽  
Gleibson Barbosa da Silva

Crops in general make poor use of phosphorous fertilizer and, as a result, recommended rates and production costs are very high. Phosphorus can be made more readily available to plants by proper management of phosphate fertilization, selecting both, type of fertilizer and application method. This study was carried out to evaluate the efficiency of the natural Gafsa rock phosphate and the triple superphosphate on dry matter production and P uptake by corn plants cultivated in a greenhouse. Fertilizers were applied localized and broadcast/incorporated on to two soils with contrasting phosphorus capacity factors (PCF). Rock phosphate broadcast application was as efficient as triple superphosphate in increasing corn plant dry matter in the Tropudult, with lower PCF. This effect was not observed on the Haplustox, owing to the lower P solubility due to the higher Ca concentration in this soil. Triple superphosphate rates increased plant P uptake in both soils and for both application forms. Rock phosphate resulted in higher P-content in plants, but only for broadcast application on the Ultisol.


2016 ◽  
Vol 40 (3) ◽  
pp. 203 ◽  
Author(s):  
Bambang Suwignyo ◽  
Bela Putra ◽  
Nafiatul Umami ◽  
Cahyo Wulandari ◽  
Ristianto Utomo

This study aimed to determine the effect of arbuscular mycorrhizal fungi (AMF) and phosphate (P) fertilizer on the nutrient content, phosphate uptake and in vitro digestibility of alfalfa (Medicago sativa L.).The research was conducted at green house of Forage and Pastures Science Laboratory, Faculty of Animal Science Universitas Gadjah Mada. The experiment was arranged in Completely Randomized Design using 3x4 factorial patterns with four replications. The first factor was dosage of phosphate fertilizer SP 36 (0, 60, and 120 kg/ha). Second factor was the dosage of AMF (0, 0.8, 1.6, and 2.4kg/ha). The variable measured was nutrient contents (crude protein, dry matter, and organic matter), total P uptake and dry matter and organic matter in vitro digestibility. The results showed that the interaction of AMF and P fertilizer had no significant effect on crude protein and total P uptake, but highly significant effect on the parameters of dry matter, organic matter and dry matter and organic matter in vitro digestibility. 


2014 ◽  
Vol 32 (3) ◽  
pp. 141-148
Author(s):  
E.D. Riley ◽  
H.T. Kraus ◽  
T.E. Bilderback ◽  
D.M. Benson

‘Sunglow’ azalea and ‘Blue Pacific’ juniper were grown in pine bark (PB) and pine tree (PT) substrates that were amended with cotton stalks composted with a N source (CSN), cotton stalks composted without an N source (CS), and cotton gin trash (CGT) to evaluate the substrate's effect on plant growth and disease suppression. The plants were grown under two different, commonly used, irrigation/ground surface management regimes — overhead, sprinkler irrigation with black geotextile weed fabric covering the ground (OH) or low-volume, spray stake irrigation with gravel covering the ground (LV). In 2010, with OH, all PB-amended substrates produced significantly larger azalea shoots than PT-amended substrates. In 2011, with OH, all azalea shoots were similar in size when grown in all substrates except for PT:CS, where plants were significantly smaller. With LV, in 2010 and 2011, azalea shoot growth was largest when grown in a PB substrate amended with CSN or CGT and lowest in PT:CS. Junipers with OH produced generally larger shoot growth with the PB-based substrates in both 2010 and 2011 compared to the PT-based substrates. With LV, PT:CGT produced the numerically smallest juniper shoot growth for both years. Overall, PT-based substrates appeared to produce greater consistency in growth, because responses were more similar in 2010 and 2011, however irrigation method and management can impact growth regardless of substrate composition. CGT added to PB- or PT-based substrates enhanced Ca and Mg uptake by both species but not P uptake. OH generally kept ground surface and substrate temperatures lower than LV regardless of substrate composition. The substrates tested neither enhanced nor deterred P. cinnamomi infection in azalea or juniper.


Sign in / Sign up

Export Citation Format

Share Document