Stimulation of wool growth by thyroxine implantation. I. Liveweight changes and wool growth of fine-wool Merino wethers

1964 ◽  
Vol 15 (4) ◽  
pp. 657 ◽  
Author(s):  
LJ Lambourne

Groups of 20 and 30 fine-wool Merino wethers were treated with L-thyroxine and their subsequent liveweight changes and wool production studied under a variety of grazing conditions for a year. Treatments comprised : (1) Single implantations of 60 mg in autumn, winter, spring, or summer. (2) Repeated implantations at all four seasons of 30, 60, or 90 mg. (3) Weekly subcutaneous injection of 7 mg in aqueous solution. These groups were grazed with untreated wethers on improved native pastures at one to two sheep per acre. (4) Repeated 60 mg implantations at four seasons in wethers grazed on native pasture providing a lower level of nutrition. (5) Repeated 60 mg implantations at four seasons in wethers grazed on sown pasture providing a higher level of nutrition. After every implantation there was a loss of 5–10 lb liveweight — more pronounced and more prolonged in the wethers given greater amounts of thyroxine, and more prolonged in those at lower levels of nutrition. Deaths occurred in several groups, increasing with dose rate or with poorer nutrition up to 30–50% of the group. Wool growth was not increased significantly by repeated 60 mg implants at the lowest level of nutrition, nor by the single 60 mg implant in late spring. Increases of 34% in annual fleece weight resulted from 60 mg implants in autumn and summer. Repeated implantation of 30, 60, and 90 mg in groups on a medium or high plane of nutrition increased annual fleece weight by 8, 14, and 19%, and 7 mg injected weekly by 11%. Increases in fleece weight were due partly to increased fibre length, and partly to an increase in grease and suint which reduced the clean scoured yield by 1–2%. It is concluded that line-wool Merinos, despite their lower body weight and greater specialization for wool production, react to thyroxine treatment in the same way as has been established for "dual-purpose" sheep. The safe maximum dose rate is critically dependent on the current level of nutrition, particularly for young sheep. Repeated implantations without adequate opportunity for recovery of catabolized body tissues may produce no increase in wool growth and may cause death.

1962 ◽  
Vol 2 (6) ◽  
pp. 160 ◽  
Author(s):  
MJ Sharkey ◽  
IF Davis ◽  
PA Kenney

The effect of different planes of nutrition on the wool production of Corriedale wethers at pasture was studied between August 1959 and December 1960. The plane of nutrition was controlled by rate of stocking. The effect of previous nutritional treatment on wool production was slight. It affected wool weight and fibre length for 160 one month and fibre diameter for two months. The differences in current nutritional treatment were accompanied by large differences in wool production except during the spring months. On the highest plane of nutrition the wool production showed little seasonal variation, apart from an initial increase in production during the autumn. On the medium and low planes of nutrition wool growth declined substantially in autumn and winter and increased again in spring. The mean fibre diameter of the wool that was clipped frequently was greater than that of fleece wool obtained from the opposite midside at shearing. Further, in the groups on medium and low planes of nutrition estimates of fleece weight based on the combined weight of periodical clippings were greater than actual fleece weights. It is concluded that, in the dry Victorian summer, wool production is influenced by the plane of nutrition in the previous spring for a short period only, and that in autumn and winter it is dependant almost entirely on the feed immediately available.


2009 ◽  
Vol 49 (12) ◽  
pp. 1100
Author(s):  
B. J. McGuirk

Early work in the 1950s on the wool growth response of sheep from diverse genotypes for wool production in response to varying planes of nutrition at pasture did not show the significant genotype × environment interactions exhibited in later pen studies with the same or very similar genotypes. However, this early study used a log-transformation on all traits to adjust nutritional effects for scale. Re-analysis of the original (i.e. untransformed) data shows that superior genetic merit for clean fleece weight, different sire progeny groups or selection flocks is more apparent when hogget ewes are fed a high plane of nutrition at pasture. However, only in the case of flocks was the interaction statistically significant, and this interaction was insignificant when data were either log-transformed, or when an appropriate test that accounts for scale-type effects was applied. When left untransformed, the data are, thus, in agreement with the subsequent pen studies that examined data on untransformed clean wool production.


1993 ◽  
Vol 33 (3) ◽  
pp. 259 ◽  
Author(s):  
NM Fogarty ◽  
AR Gilmour

A profit equation was developed for Australian Corriedale and Polwarth dual-purpose sheep kept for both wool and lamb production. Ten traits contribute to income and costs and were included in the breeding objective. These encompass wool production, fibre diameter, and feed intake of breeding ewes and hogget ewe replacements; sale weight and carcass fat depth of lambs; and reproductive rate and mature weight of ewes. The relative economic value for each trait in the enterprise was calculated from the profit equation using income and costs for 1 year. Overall gain ($A) and gain in each trait in the breeding objective from selection using an index of hogget greasy fleece weight, hogget fibre diameter, dam's number of lambs weaned, lamb weight, and lamb fat depth are reported. The sensitivity of the genetic changes in each trait in the breeding objective and index coefficients were assessed for a range of prices of products and feed costs. Sensitivity to changes in heritabilities and genetic correlations was also assessed. The incorporation of these maternal traits into LAMBPLAN is discussed. For the standard parameters and prices used, gain in leanness accounted for one-third of overall gain ($/ewe. s.d. of selection). Other traits that contributed to overall gain were fibre diameter (28%), reproduction (18%), and growth (14%). There was a small gain through feed intake (8%), and a very small loss in wool weight. Measures of fatness, growth, and fibre diameter were the important traits in the selection index. Inclusion of hogget greasy fleece weight and dam's number of lambs weaned each added <1% to the efficiency of the selection index. Varying the sale price for lamb and the price differentials for fibre diameter and fat depth had the greatest impact on overall gain. High lamb price increased gains in both reproduction and lamb weight, whereas, high price differentials for fibre diameter and fat mainly increased gains in the particular trait. A large range in prices for wool had very little effect on the individual traits or overall. Changing feed costs had little effect on overall gain, although high feed cost reduced gains from reproduction which were compensated by reduced feed intake. Halving the heritability value for each trait reduced overall gain, largely through reduction in the trait. Varying the genetic correlations of wool production with other traits had little effect. However, when genetic correlations of reproduction with weight, fat, and fibre diameter were varied there were changes in overall gain, largely through reproduction.


1978 ◽  
Vol 18 (90) ◽  
pp. 58 ◽  
Author(s):  
RND Reid

Groups of Polwarth ewes which 1. were barren, 2, were pregnant but aborted with prostaglandins in early pregnancy, 3. lambed and reared a single lamb and 4. lambed but had their single lamb removed soon after birth, were used to estimate the effects of pregnancy and lactation on wool and Iiveweight. Pregnancy plus lactation reduced liveweight (17 per cent), wool growth rate (9 per cent) and clean fleece weight (11 per cent) ; pregnancy alone reduced liveweight (10 per cent), wool growth rate (7 per cent) and clean fleece weight (10 per cent) and its effects were greater than those of lactation in each of the characters studied.


1977 ◽  
Vol 88 (3) ◽  
pp. 651-653 ◽  
Author(s):  
M. H. Fahmy ◽  
J. A. Vasely

SUMMARYGreasy fleece weight (12 months growth) and wool samples from hip and shoulder regions were taken on 15 Dorset, 20 Leicester, 20 Suffolk and 17 DLS ewes (a cross of ½ Dorset, ¼ Leicester, ¼ Suffolk obtained by mating DL rams to DS ewes and DS rams to DL ewes). The purpose of the study was to compare wool production and characteristics of the first generation of DLS with that of the three breeds of origin. Wool production of DLS was 3·58 kg, 8·8 and 14% higher than that of Suffolk and Dorset, but 11% lower than that of Leicester (P< 0·01). The percentage of clean wool was highest in Leicester (78·3%), followed by DLS, Dorset and Suffolk (76·1, 74·3 and 70·5%, respectively). The average fibre diameter of the DLS and Leicester was 38 /m, 4 /m thicker than that for Suffolk and Dorset (P < 0·01). Average fibre length was 15 cm in DLS and Dorset, 6 cm shorter than in Leicester, and 3 cm longer than in Suffolk (P < 0·01). The variability in fibre diameter and length was highest in Leicester, followed closely by DLS.


1993 ◽  
Vol 33 (4) ◽  
pp. 397 ◽  
Author(s):  
LG Butler ◽  
BJ Horton ◽  
PM Williams ◽  
RG Banks

Tasmanian Merinos and Polwarths were mated in each of 2 years to produce 2 drops of Merino, Polwarth, and F1 reciprocal cross progeny. Polwarths had weaning weights similar to Merinos but were 14% heavier as hoggets. Polwarths grew a similar amount of wool of 11% greater (P<0.001) fibre diameter; however, wool production was 9% less efficient based on metabolic weight. Polwarths displayed an advantage in resistance to footrot. There was a marked Polwarth maternal effect of about 16% on weaning weight but no elfect on hogget weight. The Polwarth maternal effect on fleece weight and efficiency was 9% (P<0.001). In a comparison with a single-born male, ewes weighed 5% less at weaning and 7% less at hogget shearing and produced about 6% less wool (P<0.001), although of comparable fibre diameter. Twins weighed 17% less at weaning, but only 3% less at hogget shearing (P<0.001). They grew about 5% less wool, which was of 2% greater fibre diameter (P<0.001) and 5% higher wool score, but efficiency was 2.5% lower. Production was generally lower (except for yield and wool score) in the 1988 drop than the 1987 drop by 3-10%. Differences in productivity between ram sources were of only slightly lesser magnitude than differences between breeds. The number of feet affected by footrot was reduced by 17% in the 1988 drop. Severe footrot affecting more than 1 foot reduced liveweight but did not significantly reduce fleece weight. There appeared to be some heterosis for weaning weight (10%) and hogget weight (6%), but little heterosis in wool growth (2-3%) or efficiency (-2%).


1967 ◽  
Vol 20 (1) ◽  
pp. 153 ◽  
Author(s):  
PJ Reis ◽  
DA Tunks ◽  
OB Williams ◽  
AJ Williams

The sulphur content of wool from 66 Peppin Merino wethers maintained together at pasture was measured in midside staples representing 49 weeks growth. The distribution of sulphur values was normal with a mean of 3�43 % and a range of 3�08-3�92 %. The sulphur content of the wool was inversely related to wool production among these sheep. There were no significant differences in the relationship when wool production was expressed as fleece weight index (F.W.I.), i.e. clean fleece weight/body weight (r = -0�48), as clean fleece weight (r = -0�42), or as wool growth per unit area of skin (r = - 0�37). The mean sulphur content of wool from sheep with the 10 highest values for F.W.I. was 3�27%, compared with a mean of 3 �55% sulphur for wool from sheep with the 10 lowest values for F.W.I.


1973 ◽  
Vol 26 (2) ◽  
pp. 465 ◽  
Author(s):  
AJ Williams

Twelve mature ewes from a flock selected for high clean fleece weight (Fleece Plus) and twelve from a flock selected for low clean fleece weight (Fleece Minus) were randomly divided between two dietary treatments: 500 or 1100 g per day of chaffed lucerne hay.


1988 ◽  
Vol 60 (6) ◽  
pp. 540-545
Author(s):  
M. Osikowski ◽  
B. Borys ◽  
M. A. Osikowski

The investigations were carried out to evaluate fattening ability, carcass quality and wool production of semi-intensively fattened ram lambs the progeny of F1 rams: Finnsheep (F) x Polish Merino (PM) mated to PM ewes. Two experiments were performed, on a total of 73 crossbreds and 73 purebred PM lambs. The lambs were housed together in a shed and fed farm-produced roughages, supplemented by commercially available concentrates. The crossbred lambs under semi-intensive feeding were found to have similar fattening ability as the purebreds: daily gains F x PM x PM 196 g and PM 191 g, energy consumption per 1 kg of body weight gain 26.1 and 27.0MJ, respectively. Crossbreeding did not affect slaughter value, but the commercial evaluation of live lambs was poorer in the crossbred groups. The tested crossbreds had generally better wool performance: their clean fleece weight was 1.09 kg, while that of the purebreds was 0.98 kg, rendement respectively 59.3 and 53.0 %, fibre length 6.7 and 5.4 cm, while fibre diameter was similar in the both groups.


1955 ◽  
Vol 6 (4) ◽  
pp. 476 ◽  
Author(s):  
RA Daly ◽  
HB Carter

Two experiments have been conducted with young Lincoln, Corriedale, Polwarth, and fine Merino maiden ewes to compare the growth of fleece by these breeds and to assess relations between the growth of fleece and some factors, nutritional and non-nutritional, likely to influence its growth. In both experiments four representatives of each breed were kept in a sheep house in single pens and fed a high quality diet of constant composition. The second experiment followed immediately on the first and the same sheep were used except for necessary replacements. In the first experiment, which lasted for about one year, the intake of the diet was continuously unrestricted; in the second the intake of the diet was progressively restricted by ordered steps and was finally maintained for 12 weeks at one-fifth of the unrestricted intake of the first 4 weeks of the experiment. With few exceptions, the absolute or relative values of the characters measured formed a smooth series from the fine Merino through the Polwarth and Corriedale to the Lincoln-either in ascending order (e.g. food and water intake; liveweight and chest dimensions; fibre thickness, length, and volume; clean wool, suint, and total skin products output; clean wool and suint output per unit food intake) or descending order (e.g. total and primary follicle density; ratio of secondaries to primaries; wax output and wax output per unit food intake) or showed little or no difference between the breeds (e.g. body length and height; food intake per unit net liveweight; total skin products per unit food intake). The relative positions of the breeds as shown in the first experiment mere generally maintained in the second as food intake was progressively reduced. The results of the two experiments were combined for the individuals and a series of partial regression analyses were undertaken to determine the regression of some variables of fleece production on the level of food intake, atmospheric temperature, fleece weight, and experimental time. Self-selected food intake decreased with increase in fleece weight and less obviously with increase in experimental time (or, possibly, with deposition of subcutaneous fat). Water intake increased with both increase in food intake and rise in atmospheric temperature. Wool weight produced, and fibre thickness, length, and volume growth, all increased with increase in food intake, and within the limits of observed food intake the relation between wool growth and food intake was adequately represented by linear regression. Increase in atmospheric temperature exerted no significant influence on wool growth, except by the Lincolns (through fibre thickness). A positive regression of wool growth rate on fleece weight, acting through fibre length growth, was found, but change in fibre thickness was not related to increase in fleece weight. Wax production was positively related to increase in food intake and negatively to rise in atmospheric temperature. Suint production was positively related to both food intake and fleece weight. Wool, wax and suint production per unit food intake decreased with increase in food intake. Wax per unit food intake decreased with rise in temperature and suint per unit food intake increased with increase in fleece weight.


Sign in / Sign up

Export Citation Format

Share Document