The comparative applied phosphate requirements of eight annual pasture species

1969 ◽  
Vol 20 (5) ◽  
pp. 809 ◽  
Author(s):  
PG Ozanne ◽  
J Keay ◽  
EF Biddiscombe

The effects of a wide range of applied phosphate levels were compared on eight annual pasture species. Marked differences were found between species in response by tops, roots, or whole plant, and in top/root ratio. Different forms of yield response curve were given by the non-legumes, the clovers, and the lupin. At an early growth stage cape-weed, the three clovers, and erodium were highest in phosphorus requirement for near-maximum yield. At the full flowering stage, species ranked in the following decreasing order of requirement: cupped clover > rose clover > subterranean clover > lupin > erodium = cape-weed > Wimmera ryegrass = silver grass. Yields and phosphorus concentrations are compared in relation to applied phosphorus levels. In the early vegetative stage, all species needed at least 0.7% phosphorus in the tops for maximum yield, but by flowering this requirement had fallen to very much lower levels. It is suggested that differences between the species in response to applied phosphate are large enough to influence strongly the botanical composition of pasture and its fertilizer requirements.

1976 ◽  
Vol 27 (4) ◽  
pp. 479 ◽  
Author(s):  
PG Ozanne ◽  
KMW Howes ◽  
A Petch

The levels of broadcast phosphate needed for 90% of maximum production by subterranean clover, Wimmera ryegrass at two levels of nitrogen, wheat and lupins are compared in a field experiment. Two seeding rates, one five times the other, were used to vary the stand densities and yields per unit area of the swards. A total of 180 kg nitrogen/ha was supplied to the wheat and high nitrogen grass plots; the low nitrogen grass plots received 30 kg/ha. Although both the high seeding rates and the high nitrogen applications gave up to double the yield per unit area, they did not significantly change the level of phosphate required for 90% of maximum yield by a given species or mixture. Grown as single species, lupins had the highest phosphorus requirement (202 kg/ha); wheat (118 kg/ha) and clover (107 kg/ha) had similar requirements; while grass with either a low nitrogen supply (58 kg/ha) or a high nitrogen supply (56 kg/ha) had the lowest requirement when measured during flowering. When clover and ryegrass were grown as a mixed sward, the phosphorus requirement (84 kg/ha) was close to the average of those for the pure clover and grass. Both the grass and clover responded to approximately the same level of phosphate when grown as a mixture. The amount of nitrogen fixed by the clover, either as a pure sward or when mixed with grass, increased with increasing phosphate application. We think that the phosphate level required by the grass when grown with clover rather than as a pure sward was an expression of this increased nitrogen supply and not a direct response to phosphate. The levels of phosphate required to produce 90% of the maximum grain yield in the lupin and ear yield in the wheat were similar to the phosphate requirement for 90% of maximum vegetative yield.


1992 ◽  
Vol 32 (8) ◽  
pp. 1077 ◽  
Author(s):  
BH Paynter

Burr medic (Medicago polymorpha) and yellow serradella (Ornithopus compressus) were compared with subterranean clover (Trifolium subterraneum) in their response to freshly topdressed phosphate in the low rainfall wheatbelt of Western Australia. Species were compared on the amount of applied phosphorus (P) required for 90% maximum yield and the ratio of their curvature coefficients from the Mitscherlich relationship between P applied and absolute yield. On marginally acidic, medium-textured soils, burr medic had a higher external shoot requirement for applied P than subterranean clover. Relative differences between the species were affected by season, initial concentration of bicarbonate-extractable P in the soil (0-10 cm), and timing of plant harvest during the growing season. Burr medic generally achieved a higher absolute maximum yield at each harvest, a larger absolute yield response, and a larger percentage response to applied P than subterranean clover. There was no difference between burr medic and subterranean clover with respect to the internal efficiency of P use for shoot production. For seed production, the external requirements of burr medic and subterranean clover for applied P were similar according to the criterion of P required at 90% maximum yield, but burr medic had a higher requirement if curvature coefficient was the criterion for comparison. Burr medic also had a higher internal efficiency of P use for seed production than subterranean clover. On an acidic, light-textured soil, yellow serradella had a lower requirement for applied P than subterranean clover, according to both criteria for all harvests in 2 separate years.


1951 ◽  
Vol 2 (3) ◽  
pp. 295 ◽  
Author(s):  
CM Donald ◽  
D Spencer

Pre-soaking seed in a sodium molybdate solution was compared with the direct application of sodium molybdate to the soil as a means of preventing deficiency of molybdenum. Subterranean clover, which was used as the test plant, was grown in a molybdenum deficient soil in pot culture for this study. Pre-soaking in 0.1 per cent. or 1 per cent. sodium molybdate was fully effective in promoting normal growth. The soil and seed treatments were equally effective in promoting yield response at all levels of application examined. At levels of application in excess of the requirements for maximum yield, pre-soaking gave a higher molybdenum content of the tops than did equivalent soil applications. At all levels of application, pre-soaking gave a higher nitrogen content than that resulting from the soil application of molybdenum.


1984 ◽  
Vol 35 (3) ◽  
pp. 389 ◽  
Author(s):  
MA Gilbert ◽  
AD Robson

The external and internal requirements for sulfur of five pasture legumes and three grasses of temperate origin were examined in a pot experiment in which plants were grown with seven levels of sulfur supply for 58 days. Nitrogen supply was non-limiting. There was no distinct difference between legumes and grasses in their external requirement for sulfur (i.e. the amount of sulfur required for 90% of maximum yield) or in their sensitivity to sulfur deficiency (i.e. yield at the lowest sulfur supply expressed as a percentage of maximum yield). The requirement for sulfur (mg/pot) fell in the following order: Hunter River lucerne (24) > Jemalong barrel medic (19) > brome grass and Wimmera ryegrass (18) > barley grass (15) > Clare subterranean clover (13) > Trikkala subterranean clover (11) > Seaton Park subterranean clover (10). The high external requirement for sulfur of Hunter River lucerne appears to be due to its poor ability to distribute sulfur from root to shoot and to its high internal requirement for sulfur. However, for Jemalong barrel medic, the high external requirement was solely due to its high internal requirement for sulfur. The higher external requirement for sulfur of the grasses compared with the subterranean clover cultivars appears to be due to the poorer ability of the grasses to obtain sulfur from the soil used in this experiment, rather than to differences in the transfer of sulfur from root to shoot, or in their internal requirement for sulfur.


1966 ◽  
Vol 17 (6) ◽  
pp. 875 ◽  
Author(s):  
PR Smith

A disease causing serious crop losses in early-sown French beans in the East Gippsland area of Victoria has been shown to be caused by subterranean clover stunt virus. The virus infected a wide range of leguminous plants and persisted through a moult of its principal vector, Aphis craccivora Koch. It was not seed-borne, nor was it mechanically transmissible. The field symptoms of the disease on French beans consisted of chlorosis and epinasty of leaves, the whole plant being markedly stunted with a reduction in the length of the internodes. These symptoms were reproduced in the glasshouse by aphid inoculation of the virus to French beans. However, the virus was recovered from both naturally infected and artificially inoculated beans with difficulty. In field tests, no cultivar of French bean tested was immune to the virus, although a high degree of tolerance was observed in the cultivars Red Mexican U.I.3, U.I.34, and U.I.37, and Pinto U.I.72 and U.I.78.


1998 ◽  
Vol 49 (2) ◽  
pp. 233 ◽  
Author(s):  
J. W. D. Cayley ◽  
M. C. Hannah ◽  
G. A. Kearney ◽  
S. G. Clark

The response of pastures based on Lolium perenne L. and Trifolium subterraneum L. to single superphosphate was assessed at Hamilton, Victoria, by measuring the growth of pastures during winter, spring, and summer over 7 years from 1979 to 1987. The seasons were defined by the pattern of pasture production, rather than by calendar months. Winter was the period of constant growth rate following the autumn rain; spring was the period of accelerating growth rate until growth rate changed abruptly following the onset of dry summer weather. Pastures were grazed with sheep at a low, medium, or high grazing pressure, corresponding generally to stocking rates of 10, 14, or 18 sheep/ha. At each level of grazing pressure, single superphosphate was applied at 5 rates from 1979 to 1982; the highest rate, expressed as elemental phosphorus (P), was reduced from 100 to 40 kg/ha during this time. In addition there was an unfertilised treatment. In 1984, fertiliser was applied at 6 rates from 4 to 40 kg P/ha. No fertiliser was applied in the remaining years, including 1983. Pasture production was measured from 1979 to 1982 and from 1985 to 1987. Total pasture dry matter (DM) accumulation per year at the highest stocking rate was less than the other treatments in 4 of the years. Averaged over all years and fertiliser treatments, the annual net production was 10·1, 10·1, and 9·0 t DM/ha (P < 0·05) for plots grazed at low, medium, and high stocking rates, respectively. The amount of fertiliser required to reach a given proportion of maximum yield response did not vary between winter and spring in any year, but the greater potential yield in spring (P < 0 ·001) meant that as more fertiliser was applied, the disparity between pasture grown in winter and pasture grown in spring increased. Differences in this disparity between extreme levels of P ranged from 1·4 t DM/ha in a drought to about 7 t DM/ha in a good season. The implications for managing farms when pastures are fertilised at higher rates than currently practised by district farmers are that systems of animal production with a requirement for plentiful good quality pasture in spring, such as ewes lambing in spring, should be used. The benefit of spring lambing over autumn lambing was supported when the 2 systems were compared over 26 years using the GrassGro decision support system. Well fertilised pasture systems will also allow more scope for conserving pasture as hay or silage, and increase opportunities for diversification in the farming enterprise, such as spring-growing crops.


1978 ◽  
Vol 29 (2) ◽  
pp. 225 ◽  
Author(s):  
PG Ozanne ◽  
A Petch

Three crop species, sand-plain lupin, Lupinus cosentinii L. (cv. Chapman), narrow-leaf lupin, L. angustifolius L. (cv. Uniharvest), and wheat, Triticum aestivium (cv. Gamenya), were grown under field conditions in soil fertilized then cultivated to 10 cm depth. Two annual pasture species, subterranean clover, Trifolium subterraneum L. (cv. Daliak), and Wimmera ryegrass, Lolium rigidum Gaud. (cv. Wimmera), were also grown in the field both with and without cultivation. All species were fertilized with seven levels of phosphate broadcast on the soil surface before cultivation. The amount of phosphate which produced 90% of maximum yield depended on species and cultivation practice: wheat required 98 kg phosphorus/ha; L. angustifolius, 65 kg/ha; L. cosentinii, 42 kg/ha; subterranean clover, after cultivation, 49 kg/ha; subterranean clover, not cultivated, 28 kg/ha; Wimmera ryegrass after cultivation, 40 kg/ha; Wimmera ryegrass, not cultivated, 18 kg/ha. All species except wheat required less current phosphate in this experiment than they did 3 years earlier on the same site in virgin soil. Cultivation changed the distribution of soil phosphate, and the roots of the pasture species followed the phosphate distribution.


2002 ◽  
Vol 53 (12) ◽  
pp. 1383
Author(s):  
J. W. D. Cayley ◽  
M. C. Hannah ◽  
G. A. Kearney ◽  
S. G. Clark

The response of pastures based on Lolium perenne L. and Trifolium subterraneum L. to single superphosphate was assessed at Hamilton, Victoria, by measuring the growth of pastures during winter, spring, and summer over 7 years from 1979 to 1987. The seasons were defined by the pattern of pasture production, rather than by calendar months. Winter was the period of constant growth rate following the autumn rain; spring was the period of accelerating growth rate until growth rate changed abruptly following the onset of dry summer weather. Pastures were grazed with sheep at a low, medium, or high grazing pressure, corresponding generally to stocking rates of 10, 14, or 18 sheep/ha. At each level of grazing pressure, single superphosphate was applied at 5 rates from 1979 to 1982; the highest rate, expressed as elemental phosphorus (P), was reduced from 100 to 40 kg/ha during this time. In addition there was an unfertilised treatment. In 1984, fertiliser was applied at 6 rates from 4 to 40 kg P/ha. No fertiliser was applied in the remaining years, including 1983. Pasture production was measured from 1979 to 1982 and from 1985 to 1987. Total pasture dry matter (DM) accumulation per year at the highest stocking rate was less than the other treatments in 4 of the years. Averaged over all years and fertiliser treatments, the annual net production was 10·1, 10·1, and 9·0 t DM/ha (P < 0·05) for plots grazed at low, medium, and high stocking rates, respectively. The amount of fertiliser required to reach a given proportion of maximum yield response did not vary between winter and spring in any year, but the greater potential yield in spring (P < 0 ·001) meant that as more fertiliser was applied, the disparity between pasture grown in winter and pasture grown in spring increased. Differences in this disparity between extreme levels of P ranged from 1·4 t DM/ha in a drought to about 7 t DM/ha in a good season. The implications for managing farms when pastures are fertilised at higher rates than currently practised by district farmers are that systems of animal production with a requirement for plentiful good quality pasture in spring, such as ewes lambing in spring, should be used. The benefit of spring lambing over autumn lambing was supported when the 2 systems were compared over 26 years using the GrassGro decision support system. Well fertilised pasture systems will also allow more scope for conserving pasture as hay or silage, and increase opportunities for diversification in the farming enterprise, such as spring-growing crops.


1970 ◽  
Vol 21 (5) ◽  
pp. 677 ◽  
Author(s):  
KR Helyar ◽  
AJ Anderson

The growth responses of Lolium pevenne L. cv. Clunes, Phalavis tubevosa L. cv. Australian Commercial, Trifolium subterraneurn L. cv. Mount Barker, Trifolium vepens L. cv. Victorian, and Medicago sativa L. cv. Hunter River to lime, superphosphate, and nitrogen were compared in a field experiment on a soil with a pH of 4.9-5.4 (115 soil/water ratio) and with the cation exchange capacity 25-50% saturated by aluminium. The soil had a high phosphorus requirement. The effects of superphosphate and lime on the sodium bicarbonate extractable phosphorus levels and on the soil pH are discussed. Lucerne was one of the least productive species at most harvests. It required more superphosphate than subterranean clover, perennial ryegrass, or white clover to attain any given percentage of maximum yield. The visual symptoms of the plants and the yield interactions showed little evidence of effects of high aluminium, which indicated that the superphosphate was needed to correct phosphorus deficiency rather than to counteract any aluminium toxicity. The initial soil pH was somewhat higher than the levels previously found to be associated with aluminium toxicity on the soil in pots. Phalaris growth was increased to the highest superphosphate level, but growth at lower levels improved with time. Subterranean clover growth was depressed by the highest superphosphate level early in the season. The other species were not affected in this way. More lime was needed for lucerne than for white clover, which in turn needed more lime than subterranean clover. Nitrogen decreased the response of clover to lime, and the evidence indicates that the response of the legumes to lime was due mainly to the effect of lime in improving nodulation and nitrogen fixation. The lime-treated subterranean clover responded to nitrogen, especially in the first few months after sowing. The grasses responded markedly to nitrogen, while lime had a small effect on their growth and response to nitrogen. In no case did lime decrease the requirement for superphosphate.


Soil Research ◽  
2001 ◽  
Vol 39 (5) ◽  
pp. 979 ◽  
Author(s):  
R. N. Summers ◽  
M. D. A. Bolland ◽  
M. F. Clarke

Bauxite residue (red mud) is the byproduct from treatment of crushed bauxite with caustic soda to produce alumina. When dried the residue is alkaline and has a high capacity to retain phosphorus (P). The residue is added to pastures on acidic sandy soils to increase the capacity of the soils to retain P so as to reduce leaching of P into waterways and so reduce eutrophication of the waterways. This paper examines how red mud influences the effectiveness of P from single superphosphate for producing subterranean clover (Trifolium subterraneum) dry herbage, in the year of application and in the years after application (residual value). Red mud was applied at 0, 2, 5, 10, 20, and 40 t/ha and the P was applied at 0, 5, 10, 20, 40, 80, and 160 kg P/ha. In the year of application and the year after application of red mud, dry matter yields were doubled on the soil treated with 20 t/ha of red mud compared with the untreated control. Improvements in production were initially greater in the red mud treatments than in the lime treatment (2 t lime/ha). Red mud increased the maximum yield plateau for P applied in current and previous years. When P was applied to freshly applied red mud, more P needed to be applied to produce the same yield as the amount of red mud applied increased. Red mud increased soil pH, and the increases in yield are attributed to removing low soil pH as a constraint to pasture production. This initial need for higher amounts of fertiliser P when increasing amounts of red mud were applied may be due to increased P sorption caused by increased precipitation of applied P when the fertiliser was in close contact with the freshly alkaline red mud. When P was freshly applied to red mud that had been applied to the soil 12 months ago, yield response and P content increased. This was attributed to the reduction in sorption of P due to red mud being neutralised by the soil and because sorption of P already present in the soil reduced the capacity of the red mud to sorb freshly applied fertiliser P. Residues of P in the soil and pH were also increased with application of red mud. In the years after application of red mud and lime, relative to P applied to nil red mud and nil lime treatment, the effectiveness of fertiliser P applied to the red mud and lime treatments increased. This was so as determined using plant yield, P concentration in plant tissue, and soil P test.


Sign in / Sign up

Export Citation Format

Share Document