The effect of chlorsulfuron and diclofop-methyl on the uptake and utilization of zinc by wheat

1992 ◽  
Vol 43 (1) ◽  
pp. 59 ◽  
Author(s):  
LD McLay ◽  
AD Robson

The effects of the herbicides Hoegrass and Glean on the uptake of zinc by wheat were examined in two glasshouse experiments. Application of the active ingredients chlorsulfuron and diclofop-methyl decreased shoot weight, root weight and zinc uptake similarly to the herbicides Glean and Hoegrass. It can therefore be concluded that the effects of Hoegrass and Glean on zinc uptake in wheat can be attributed to these active ingredients and not to other constituents of the commercial herbicide preparations. Effects of chlorsulfuron on zinc uptake in soil were different from those obtained in solution. In soil, chlorsulfuron decreased both zinc concentrations in the youngest emerged blade and zinc content of shoots, while in solution where uptake is not likely to be limited by the rate of zinc diffusion to sites of absorption, there were no significant effects on zinc uptake. However, in both soil and solution, shoot and root weights were decreased by herbicide, particularly at low rates of zinc supply. Roots were shorter and thicker when herbicide concentrations in solution were increased.

1992 ◽  
Vol 43 (5) ◽  
pp. 1169 ◽  
Author(s):  
LD Osborne ◽  
AD Robson

The duration of inhibition of zinc uptake by chlorsulfuron was examined in wheat plants in a glasshouse experiment. Chlorsulfuron decreased shoot weight, root weight and zinc uptake. Plants that were treated with chlorsulfuron and adequately supplied with zinc partially recovered from root and shoot growth inhibition by 6 weeks and zinc uptake was recovering by 8 weeks. Plants that were seriously zinc deficient did not recover. In this experiment, potential grain yield was only reduced by chlorsulfuron when zinc supplies were inadequate. It is suggested that the recovery of plants from zinc deficiency may be the result of two processes; hydrolysis of chlorsulfuron with time removing constraints to root growth and functioning, and the release of root exudates from zinc deficient plants effective at mobilizing zinc from soil. In the field, chlorsulfuron is only likely to induce zinc deficiency and reduce yield in wheat where supplies of this trace element are marginal for growth.


1989 ◽  
Vol 40 (5) ◽  
pp. 981 ◽  
Author(s):  
AD Robson ◽  
K Snowball

The effect of the herbicide diclofop-methyl on the uptake and utilization of zinc by wheat was examined in a series of glasshouse experiments. Application of diclofop-methyl to soil induced symptoms of zinc deficiency and decreased zinc concentrations within shoots. Effects of the herbicide application in decreasing plant growth were more marked at marginal levels of zinc than at adequate levels. The application of diclofop-methyl to the soil induced zinc deficiency by decreasing the uptake of zinc from soil rather than by effects on the utilization of zinc within the plant. The application of diclofop-methyl to leaves with no contamination of the soil did not affect the zinc status of the plant. Effects of diclofopmethyl in decreasing zinc uptake did not appear to be due to effects of the herbicide on root weight or root length.In the field, diclofop-methyl is sprayed on crops with low leaf areas, hence a high proportion of the herbicide will reach the soil. It is thus likely that in field crops application of diclofop-methyl will induce zinc deficiency where the supply of zinc for the crop is marginal.


1990 ◽  
Vol 41 (1) ◽  
pp. 19 ◽  
Author(s):  
AD Robson ◽  
K Snowball

The effect of the herbicide chlorsulfuron on the uptake and utilization of copper and zinc by wheat was examined in a series of glasshouse experiments. Application of chlorsulfuron induced symptoms of both copper and zinc deficiencies, and decreased copper and zinc concentrations within shoots. Chlorsulfuron accentuated deficiencies of copper and zinc by decreasing uptake of the micronutrients rather than by affecting their utilization within the plant. Effects of chlorsulfuron in decreasing uptake of copper and zinc did not appear to be due to effects on root weight or root length. However, chlorsulfuron appeared to decrease water uptake by roots, indicating that chlorsulfuron may have decreased copper and zinc uptake by effects on root morphology or root physiology.


2021 ◽  
Author(s):  
Vladislava Schulz ◽  
Christopher Schmidt-Vogler ◽  
Phillip Strohmeyer ◽  
Stefanie Weber ◽  
Daniel Kleemann ◽  
...  

In the metallophilic beta-proteobacterium Cupriavidus metallidurans, the plasmid-encoded Czc metal homeostasis system adjusts the periplasmic zinc, cobalt and cadmium concentration, which influences subsequent uptake of these metals into the cytoplasm. Behind this shield, the PIB2-type APTase ZntA is responsible for removal of surplus cytoplasmic zinc ions, thereby providing a second level of defense against toxic zinc concentrations. ZntA is the counterpart to the Zur-regulated zinc uptake system ZupT and other import systems; however, the regulator of zntA expression was unknown. The chromid-encoded zntA gene is adjacent to the genes czcI2C2B2’, which are located on the complementary DNA strand and transcribed from a common promoter region. These genes encode homologs of plasmid pMOL30-encoded Czc components. Candidates for possible regulators of zntA were identified and subsequently tested: CzcI, CzcI2, and the MerR-type gene products of the locus tags Rmet_2302, Rmet_0102, Rmet_3456. This led to the identification of Rmet_3456 as ZntR, the main regulator of zntA expression. Moreover, both CzcIs decreased Czc-mediated metal resistance, possibly to avoid “over-excretion” of periplasmic zinc ions, which could result in zinc starvation due to diminished zinc uptake into the cytoplasm. Rmet_2302 was identified as CadR, the regulator of the cadA gene for an important cadmium-exporting PIB2-type ATPase, which provides another system for removal of cytoplasmic zinc and cadmium. Rmet_0102 was not involved in regulation of the metal resistance systems examined here. Thus, ZntR forms a complex regulatory network with CadR, Zur and the CzcIs. Moreover, these discriminating regulatory proteins assign the efflux systems to their particular function. Importance Zinc is an essential metal for numerous organisms from humans to bacteria. The transportome of zinc uptake and efflux systems controls the overall cellular composition and zinc content in a double feed-back loop. Zinc starvation mediates, via the Zur regulator, an up-regulation of the zinc import capacity via the ZIP-type zinc importer ZupT and an amplification of zinc storage capacity, which together raise the cellular zinc content again. On the other hand, an increasing zinc content leads to ZntR-mediated up-regulation of the zinc efflux system ZntA, which decreases the zinc content. Together, the Zur regulon components and ZntR/ZntA balance the cellular zinc content under both high external zinc concentrations and zinc starvation conditions.


2021 ◽  
Vol 16 (8) ◽  
pp. 75-80
Author(s):  
Pitchaiah Pelapudi ◽  
Sasikala Ch ◽  
Swarnabala Ganti

In the present rapid growing world, need for a sustainable agricultural practice which helps in meeting the adequate food demand is much needed. In this context, plant growth promoting bacteria were brought into the spot light by the researchers. Though the plant growth promoting bacteria have several beneficial applications, due to some of the disadvantages in the field conditions, they lagged behind. In the current research work, native PGPR were isolated from the rhizosphere soil samples of maize with an aim to isolate the nitrogen fixing, phosphate solubilising and potash solubilising bacteria. Out of the several isolates, potent PGPR isolates viz., Paenibacillus durus PCPB067, Bacillus megaterium PCBMG041 and Paenibacillus glucanolyticus PCPG051 were isolated and identified by using the 16 S rRNA gene sequencing studies. Genomic DNA sequences obtained were deposited in the NCBI Genbank and accession numbers were assigned as MW793452, MW793456 and MW843633. In order to check the efficacy of the PGPR isolates, pot trials were conducted by taking maize as the host plant. Several parameters viz. shoot length, shoot weight, root length, root weight and weight of the seeds were tested in which PGP treatment showed good results (shoot length - 187±3.5 cm, shoot weight - 31±4 g, root length - 32±3.6 cm, root weight - 17±2 g, yield- 103.3±6.1 g) when compared to the chemical fertilizer treatment (shoot length - 177±3.5 cm, shoot weight - 25±3.6 g, root length - 24±3.5 cm, root weight - 14.6±1.52 g, yield- 85.6±7.6 g). Based on the results, it can be stated that these native PGPR isolates can be effectively used in the plant growth promotion of maize.


Author(s):  
J. M. Weeks ◽  
P. G. Moore

Analysis of the total copper and zinc content of four species of talitrid amphipods, Orchestia gammarellus, O. mediterranea, Talitrus saltator and Talorchestia deshayesii throughout a complete spring/neap tidal cycle failed to reveal any significant effects of moulting upon body copper or zinc in any species. Moulting was synchronized to the lunar cycle only in T. saltator, taking place 5–7 days prior to a new moon. The fact that no significant changes in body metal concentrations took place with the moult cycle is discussed in relation to the use of talitrid amphipods in copper and zinc biomonitoring programmes.


1970 ◽  
Vol 9 ◽  
pp. 21-27 ◽  
Author(s):  
Nabin Kumar Dangal ◽  
D. Sharma Poudyal ◽  
S. M. Shrestha ◽  
C. Adhikari ◽  
J. M. Duxbury ◽  
...  

Pot experiment was conducted during July-September 2006 to evaluate some organic amendments such as sesame (Sesamum indicum) biomass, buckwheat (Fagopyrum esculentum) biomass, neem (Azadirachta indica) leaves, chinaberry (Melia azedarch) leaves and chicken manure @ 1, 2 and 3 t ha-1 each against the rice root-knot nematode (Meloidogyne graminicola Golden & Birchfield) in direct seeded rice. The treatments were replicated five times in a randomized complete block design. The number of second stage juveniles (J2) of M. graminicola was significantly low in chicken manure @ 3 t ha-1. The root knot severity index was significantly low in sesame @ 3 t ha-1, chinaberry @ 3, 2 or 1 t ha-1, neem @ 3 t ha-1 and chicken manure @ 2 or 3 t ha-1 amended soil but root lesion severity index was lower only in chicken manure @ 2 t ha-1 treated plots. The fresh shoot weight and length were significantly high in chicken manure amendment @ 2 or 3 t ha-1 at 45th day after seeding. However, the fresh root weight, length, number of leaves and number of J2 recovered from the roots were non-significant. Key words: biomass; juveniles; Meloidogyne graminicola; root-knot severity index; root lesion severity index DOI: 10.3126/njst.v9i0.3160 Nepal Journal of Science and Technology 9 (2008) 21-27


Genetika ◽  
2012 ◽  
Vol 44 (2) ◽  
pp. 235-250 ◽  
Author(s):  
Ahmad Dadashpour

The effects of different salt sources (C Cl2, NaCl, and KCl) and concentrations, as measured by electrical conductivity, (0, "control", 1, 3, 5, 7 and 9 dS m-1) on seed germination and seedling growth of ?Ferro?, ?Obez?, ?RS 841? and ?Strong Tosa F1? pumpkin varieties used as rootstock were investigated in this study. The results showed that germination rate, root length, shoot length, fresh root weight, dry root weight, fresh shoot weight and dry shoot weights tend to decrease when the electrical conductivity of the solution is higher than 5 dS m-1, independent of salt sources and in all of the varieties. Three days after seeding, a germination ratio of 5 % was obtained from RS 841 variety in all salt source and concentrations, while a germination ratio over 50 % was obtained in ?Strong Tosa? variety for the same conditions except CaCl2 salt source. Nevertheless, seeds germinated in medium having high concentrations of CaCl2 had lower germination rate and poor seedling growth, compared to media having the same concentrations of NaCl and KCl. It was concluded that all of the varieties studied were more sensitive to the concentrations prepared using CaCl2 than that of the KCl, and NaCl.


Author(s):  
Mahmut Çamlıca ◽  
Gülsüm Yaldız ◽  
Ferit Özen ◽  
Abdurrahman Başol ◽  
Halit Aşkın

Sage and mountain sage belong to Lamiaceae family which have commercial importance from medicinal and aromatic plants in Turkey. The aim of this study was to evaluate the effects of different doses of selenium in salinity conditions on the morphological characteristics of sage (Salvia officinalis L.) and mountain tea (Sideritis sp.). Four different doses of selenium (5, 10, 20, 40 mg/l) were applied in without salinity (0) and salinity (250 mM NaCl/l) medium. The experiment was carried out in the split plot design with three replications in the climate chamber room of the department of field crops. When the examined properties were evaluated; plant height changed between 15.56-23.85 cm, number of branches 10.50-12.78 number/plant, number of leaves 52.78-92.00 number/plant, fresh leaf weight 2.48-7.51 g/plant, dry leaf weight 0.48-3.32 g/plant, fresh root weight 1.52-7.16 g/plant, dry root weight 0.19-1.24 g/plant, root length 26.18-36.07 cm, fresh shoot weight of 1.13-7.15 g/plant and dry shoot weight 0.13-0.38 g/plant. In mountain tea, the properties were determined for plant height as 3.26-5.93 cm, for number of branches as 2.50-6.33 number/plant, for number of leaves as 28.22-91.14 number/plant, for fresh and dry leaf weights as 2.42-11,03 and 0.45-1.91 g/plant, for fresh and dry root weights as 0.71-3.97 and 0.18-0.74 g/plant, for root length as 14.78-33.26 cm, for fresh and dry shoot weights as 0.29-2.28 and 0.12-0.41 g/plant were determined. As a result of this study, 5 mg/l selenium application in salinity conditions in both plants has reached high values in terms of fresh leaf weights. In addition to this, it was found that selenium applications in salinity conditions had positive effects on dry leaf weight in sage and fresh root and fresh shoot weights in mountain tea. As a result of correlation analysis, positive correlations were found between dry leaf weight and other characteristics especially in mountain tea in terms of traits examined in both plants.


Author(s):  
Pranaya Pradhan ◽  
Dhirendra Kumar Nayak ◽  
Manaswini Mahapatra

The significant constraints in Chickpea (Cicer arietinum L.) production hampers a bit more than 14% global yield loss due to plant-parasitic nematodes. Root-knot nematode (Meloidogyne sp.) is an endoparasite and a significant species affecting the chickpea plant. So, the chemical basis of management is more cost-effective, and pest resurgence building is enhanced in the pathogen. So, ecological-based nematode management is requisite, which also is got hampered due to breeding for resistance against such plant-parasitic nematodes. This was the primary reason to conduct this experiment to enhance resistance in the chickpea plants based on Zinc uptake by using bioagent, Pseudomonas fluorescens alone or in combination. where Different treatments including nematode, bacterium, and chemicals were used sustaining the enhancement of disease resistance in chickpea cultivars, RSG 974, GG 5, GNG 2144. Zinc content of chickpea variety GNG 2144 was found the highest in treatment, when only bacterium (P. fluorescens) was inoculated, i.e., 3.14 mg/100g of root followed by GG 5, i.e., 2.79 mg/100g of root and RSG 974 was, i.e., 2.35 mg/100g of root respectively in a descending order. Application of P. fluorescence combined or alone gradually increased the Zn concentration in roots of chickpea plants compared to healthy check followed by chemical treated plants.


Sign in / Sign up

Export Citation Format

Share Document