scholarly journals Chemical Evolution of the Juvenile Universe

2009 ◽  
Vol 26 (3) ◽  
pp. 184-193 ◽  
Author(s):  
G. J. Wasserburg ◽  
Y.-Z. Qian

AbstractModels of average Galactic chemical abundances are in good general agreement with observations for [Fe/H] > –1.5, but there are gross discrepancies at lower metallicities. Only massive stars contribute to the chemical evolution of the ‘juvenile universe’ corresponding to [Fe/H] ≲ –1.5. If Type II supernovae (SNe II) are the only relevant sources, then the abundances in the interstellar medium of the juvenile epoch are simply the sum of different SN II contributions. Both low-mass (∼8–11 M⊙) and normal (∼12–25 M⊙) SNe II produce neutron stars, which have intense neutrino-driven winds in their nascent stages. These winds produce elements such as Sr, Y and Zr through charged-particle reactions (CPR). Such elements are often called the ‘light r-process elements’, but are considered here as products of CPR and not the r process. The observed absence of production of the low-A elements (Na through Zn including Fe) when the true r-process elements (Ba and above) are produced requires that only low-mass SNe II be the site if the r process occurs in SNe II. Normal SNe II produce the CPR elements in addition to the low-A elements. This results in a two-component model that is quantitatively successful in explaining the abundances of all elements relative to hydrogen for –3 ≲ [Fe/H] ≲ –1.5. This model explicitly predicts that [Sr/Fe] ≥ –0.32. Recent observations show that there are stars with [Sr/Fe] ≲ –2 and [Fe/H] < –3. This proves that the two-component model is not correct and that a third component is necessary to explain the observations. The production of CPR elements associated with the formation of neutron stars requires that the third component must be massive stars ending as black holes. It is concluded that stars of ∼25–50 M⊙ (possibly up to ∼100 M⊙) are the appropriate candidates. These produce hypernovae (HNe) that have very high Fe yields and are observed today. Stars of ∼140–260 M⊙ are completely disrupted upon explosion. However, they produce an abundance pattern greatly deficient in elements of odd atomic numbers, which is not observed, and therefore they are not considered as a source here. Using a Salpeter initial mass function, it is shown that HNe are a source of Fe that far outweighs normal SNe II, with the former and the latter contributing ∼24% and ∼9% of the solar Fe abundance, respectively. It follows that the usual assignment of ∼⅓ of the solar Fe abundance to normal SNe II is not correct. This leads to a simple three-component model including low-mass and normal SNe II and HNe, which gives a good description of essentially all the data for stars with [Fe/H] ≲ –1.5. We conclude that HNe are more important than normal SNe II in the chemical evolution of the low-A elements from Na through Zn (including Fe), in sharp distinction to earlier models.

Author(s):  
L Cavallo ◽  
G Cescutti ◽  
F Matteucci

Abstract We study the evolution of the [Eu/Fe] ratio in the Galactic halo by means of a stochastic chemical evolution model considering merging neutron stars as polluters of europium. We improved our previous stochastic chemical evolution model by adding a time delay distribution for the coalescence of the neutron stars, instead of constant delays. The stochastic chemical evolution model can reproduce the trend and the observed spread in the [Eu/Fe] data with neutron star mergers as unique producers if we assume: i) a delay time distribution ∝t−1.5, ii) a MEu = 3e − 6M⊙ per event, iii) progenitors of neutron stars in the range 9 − 50M⊙ and iv) a constant fraction of massive stars in the initial mass function (0.02) that produce neutron star mergers. Our best model is obtained by relaxing point iv) and assuming a fraction that varies with metallicity. We confirm that the mixed scenario with both merging neutron stars and supernovae as europium producers can provide a good agreement with the data relaxing the constraints on the distribution time delays for the coalescence of neutron stars. Adopting our best model, we also reproduce the dispersion of [Eu/Fe] at a given metallicity, which depends on the fraction of massive stars that produce neutron star mergers. Future high-resolution spectroscopic surveys, such as 4MOST and WEAVE, will produce the necessary statistics to constrain at best this parameter.


1999 ◽  
Vol 186 ◽  
pp. 243-250
Author(s):  
Claus Leitherer

Starburst galaxies are currently forming massive stars at prodigious rates. I discuss the star-formation histories and the shape of the initial mass function, with particular emphasis on the high- and on the low-mass end. The classical Salpeter IMF is consistent with constraints from observations of the most massive stars, irrespective of environmental properties. The situation at the low-mass end is less clear: direct star counts in nearby giant H II regions show stars down to ~1 M⊙, whereas dynamical arguments in some starburst galaxies suggest a deficit of such stars.


2021 ◽  
Vol 923 (1) ◽  
pp. 108
Author(s):  
Xinle Shang ◽  
Ang Li

Abstract We revisit the short-term post-glitch relaxation of the Vela 2000 glitch in the simple two-component model of the pulsar glitch by making use of the latest realistic equations of states from the microscopic Brueckner and the relativistic Brueckner theories for neutron stars, which can reconcile with the available astrophysical constraints. We show that to fit both the glitch size and the post-glitch jumps in frequency derivatives approximately 1 minute after the glitch, the mass of the Vela pulsar is necessarily small, and there may be demands for a stiff equation of state (which results in a typical stellar radius larger than ∼12.5 km) and a strong suppression of the pairing gap in the nuclear medium. We discuss the implications of this result on the understanding of pulsar glitches.


Author(s):  
Sunmyon Chon ◽  
Kazuyuki Omukai ◽  
Raffaella Schneider

Abstract We study star cluster formation in a low-metallicity environment using three dimensional hydrodynamic simulations. Starting from a turbulent cloud core, we follow the formation and growth of protostellar systems with different metallicities ranging from 10−6 to 0.1 Z⊙. The cooling induced by dust grains promotes fragmentation at small scales and the formation of low-mass stars with M* ∼ 0.01–0.1 M⊙ While the number of low-mass stars increases with metallicity, when Z/Z⊙ ≳ 10−5. the stellar mass distribution is still top-heavy for Z/Z⊙ ≲ 10−2 compared to the Chabrier initial mass function (IMF). In these cases, star formation begins after the turbulent motion decays and a single massive cloud core monolithically collapses to form a central massive stellar system. The circumstellar disk preferentially feeds the mass to the central massive stars, making the mass distribution top-heavy. When Z/Z⊙ = 0.1, collisions of the turbulent flows promote the onset of the star formation and a highly filamentary structure develops owing to efficient fine-structure line cooling. In this case, the mass supply to the massive stars is limited by the local gas reservoir and the mass is shared among the stars, leading to a Chabrier-like IMF. We conclude that cooling at the scales of the turbulent motion promotes the development of the filamentary structure and works as an important factor leading to the present-day IMF.


2013 ◽  
Vol 9 (S298) ◽  
pp. 154-166
Author(s):  
Ken'ichi Nomoto ◽  
Tomoharu Suzuki

AbstractWe review the recent results of the nucleosynthesis yields of massive stars. We examine how those yields are affected by some hydrodynamical effects during the supernova explosions, namely, explosion energies from those of hypernovae to faint supernovae, mixing and fallback of processed materials, asphericity, etc. Those parameters in the supernova nucleosynthesis models are constrained from observational data of supernovae and metal-poor stars. The elemental abundance patterns observed in extremely metal-poor stars show some peculiarities relative to the solar abundance pattern, which suggests the important contributions of hypernovae and faint supernovae in the early chemical enrichment of galaxies. These constraints on supernova nucleosynthesis are taken into account in the latest yield table for chemical evolution modeling.


2009 ◽  
Vol 5 (S265) ◽  
pp. 117-117
Author(s):  
O. R. Pols ◽  
R. G. Izzard ◽  
E. Glebbeek ◽  
R. J. Stancliffe

A large fraction, between 10 and 25%, of very metal-poor stars in the Galactic halo are carbon-rich objects, with enhancements of carbon relative to iron exceeding a factor 10. The majority of these carbon-enhanced metal-poor (CEMP) stars show enhancements of heavy s-process elements and have been found to be spectroscopic binary systems. Many of their properties are well explained by the binary mass transfer scenario, in which a former asymptotic giant branch (AGB) companion star has polluted the low-mass star with its nucleosynthesis products. The same scenario predicts the existence of nitrogen-rich metal-poor (NEMP) stars, with [N/C] > 0.5, from AGB companions more massive than about 3 solar masses. In contrast to CEMP stars, however, such NEMP stars are very rare. Recent studies suggest that the high frequency of CEMP stars requires a modified initial mass function (IMF) in the early Galaxy, weighted towards intermediate-mass stars. Such models also implicitly predict a large number of NEMP stars which is not seen.


2020 ◽  
Vol 633 ◽  
pp. L9 ◽  
Author(s):  
Paula Jofré ◽  
Holly Jackson ◽  
Marcelo Tucci Maia

The physical processes driving chemical evolution in the Milky Way can be probed using the distribution of abundances in low-mass FGK type stars in space phase at different times. During their final stages of evolution, stars experience nucleosynthesis several times, each at different timescales and producing different chemical elements. Finding abundance ratios that have simple variations across cosmic times therefore remains a challenge. Using the sample of 80 solar twins for which ages and abundances of 30 elements have been measured with high precision, we searched for all possible abundance ratio combinations that show linear trends with age. We found 55 such ratios, all combining an n-capture element and another element produced by different nucleosynthesis channels. We recovered the ratios of [Y/Mg], [Ba/Mg], and [Al/Y] that have been reported previously in the literature, and found that [C/Ba] depends most strongly on age, with a slope of 0.049 ± 0.003 dex Gyr−1. This imposes constraints on the magnitude of the time dependency of abundance ratios in solar twins. Our results suggest that s-process elements, in lieu of Fe, should be used as a reference for constraining chemical evolution models of the solar neighbourhood. Our study illustrates that a wide variety of chemical elements measured in high-resolution spectra is key to meeting the current challenges in understanding the formation and evolution of our Galaxy.


2004 ◽  
Vol 194 ◽  
pp. 14-17 ◽  
Author(s):  
I. F. Mirabell

AbstractGamma-ray bursts (GRBs) of long duration probably result from the core-collapse of massive stars in binary systems. After the collapse of the primary star the binary system may remain bound leaving a microquasar or ULX source as remnant. In this context, microquasars and ULXs are fossils of GRB sources and should contain physical and astrophysical clues on their GRB-source progenitors. Here I show that the identification of the birth place of microquasars can provide constrains on the progenitor stars of compact objects, and that the runaway velocity can be used to constrain the energy in the explosion of massive stars that leave neutron stars and black holes. The observations show that the neutron star binaries LS 5039, LSI +61°303 and the low-mass black hole GRO J1655-40 formed in energetic supernova explosions, whereas the black holes of larger masses (M ≥ 10 M⊙) in Cygnus X-l and GRS 1915+105 formed promptly, in the dark or in underluminous supornovao. The association with clusters of massive stars of the microquasar LSI +61°303 and the magnetars SGR 1806-20 and SGR 1900+14, suggest that very massive stars (M ≥ 50 M⊙) may -in some cases- leave neutron stars rather than black holes. The models of GRB sources of long duration have the same basic ingredients as microquasars and ULXs: compact objects with accretion disks and relativistic jets in binary systems. Therefore, the analogies between microquasars and AGN may be extended to the sources of GRBs.


2008 ◽  
Vol 25 (1) ◽  
pp. 36-43 ◽  
Author(s):  
Yong-Zhong Qian

AbstractAn overview of the sources for heavy elements in the early Galaxy is given. It is shown that observations of abundances in metal-poor stars can be used along with a basic understanding of stellar models to guide the search for the source of the heavy r-process nuclei (r-nuclei). Observations show that this source produces very little of the elements from C through Zn, including Fe. This strongly suggests that O–Ne–Mg core-collapse supernovae (SNe) from progenitors of ∼8–11 M⊙ are the source for the heavy r-nuclei. It is shown that a two-component model based on the abundances of Fe (from Fe core-collapse SNe) and Eu (from O–Ne–Mg core-collapse SNe) gives very good quantitative predictions for the abundances of all the other elements in metal-poor stars.


1998 ◽  
Vol 184 ◽  
pp. 67-68 ◽  
Author(s):  
S. V. Ramirez ◽  
K. Sellgren ◽  
D. M. Terndrup ◽  
J. S. Carr ◽  
S. Balachandran ◽  
...  

Star formation in the Galactic Center (GC) happens under unusual conditions, which include high gas temperatures, high velocity dispersions, and strong tidal shear (Spergel & Blitz 1992; Blitzet al.1993). All these conditions may lead to an initial mass function (IMF) dominated by massive stars (Morris & Serabyn 1996). A history of chemical evolution dominated by massive stars is expected to result in enhancements ofα-elements (Mg, Si, Ca, Ti) relative to Fe (Wheeleret al.1989). This argument is the main motivation to study the abundance of Fe and Mg in GC stars.


Sign in / Sign up

Export Citation Format

Share Document