scholarly journals The Skin of the Sheep: a Comparision of Body Regions

1968 ◽  
Vol 21 (3) ◽  
pp. 499 ◽  
Author(s):  
AG Lyne ◽  
DE Hollis

Light-microscope studies reveal distinctive features in the hair- and woolgrowing skin of adult sheep. The epidermis is variable in thickness-usually thin on wool-growing regions and thicker on haired regions. The follicles are mostly in groups containing one, two, or three primary (P) follicles and a number of secondary (S) follicles. The SIP follicle ratios vary from zero to about 30, depending on the breed and body region. The capillaries, myoepithelium of sweat glands, and dermal papillae of the follicles are often reactive for alkaline phosphatase. This enzyme is also asymmetrically distributed in some follicle bulbs and here it might be related in some way to the segmentation of the fibre cortex and perhaps to the formation of crimped wool. The dermal and follicle nerve networks contain cholinesterases. The latter may also contain alkaline phosphatase. Encapsulated end-organs and tactile disks are occasionally present in both hair- and wool-growing skin. Melanocytes, most common near the dermo-epidermal junction, may also be present in the outer root sheaths of the follicles, sebaceous glands, sweat glands, and dermis. Acetylcholinesterase-positive branched cells are invariably present in the epidermis in all regions where there are follicles. Sebaceous glands are associated with all follicles and apocrine sweat glands with the P follicles only. The P follicles also possess erector muscles that react for cholinesterases. Both the subaceous glands and sweat glands are usually larger in haired regions than in wool-growing regions. Large "eccrine" glands open on the naked part of the muzzle.

1955 ◽  
Vol 46 (1) ◽  
pp. 19-30 ◽  
Author(s):  
E. S. E. Hafez ◽  
A. L. Badreldin ◽  
M. M. Shafei

The structure, distribution and dimensions of skin strata and sweat glands have been investigated in Egyptian buffaloes and cattle. Samples from sixteen body regions were taken from three adult bulls of both species. Identical studies were also made on one buffalo calf and two buffalo embryos. Serial vertical and horizontal sections were cut from each body region using the ‘terpineol paraffin wax’ method. The following results were obtained.1. Buffalo skin is characterized by dermal papillae enclosing papillomatous epidermis. The fibrous structure of the dermis is similar in both species. In buffaloes, the average thickness of skin, main epidermis, papillomatous epidermis, and cornium is 6·5 mm., 50, 115, and 11μ respectively. The epidermis coefficient is 12 for the main epidermis and 18 for the papillomatous epidermis. In cattle, the average thickness of skin, epidermis and cornium layer is 4·3 mm., 51 and 5 μ respectively, while the epidermis coefficient is 8.2. The average number of hair follicles per sq.cm. of skin is 394 in the buffalo and 2633 in cattle. Each hair follicle is accompanied by two large lobulated sebaceous glands in the buffalo, and one small bilobed gland in cattle.3. There is no species difference in the histology of the sweat glands. Each hair follicle is accompanied by one sweat gland in both species. In the buffalo, the body of the sweat gland is oval and convoluted, while the duct is twisted at its attachment to the body. In cattle, the body of the gland is elongated while the duct is straight. The number of sweat glands per sq.cm. of skin is 394 in the buffalo and 2633 in cattle. The dimensions of the sweat glands are larger in buffaloes than in cattle. The length, circumference and sweating surface of the gland is 0·58, 0·47, and 0·276 sq.mm. in the buffalo, and 0·47, 0·26, and 0·124 sq.mm. in cattle respectively. The glandular surface of sweat glands per sq.cm. of skin is 1·07 sq.cm. in the buffalo and 3·08 sq.cm. in cattle.4. The type of sweat gland secretion is apocrine in both species. In the buffalo, successive stages of apocrine secretion are observed, and the merocrinelike form is rare. In cattle, the merocrine-like form prevails and the other stages are very rare. The theory (Findlay & Yang, 1950) of intraluminal transformation, of secretory products from coarse granularity to fluid homogeneity is supported. The effect of locality on the type of sweating activity is stressed.5. There are species differences in the distribution of blood vessels and capillaries. In the subepidermal level, the arterial branches are more frequent and superficial in buffaloes than in cattle. Capillaries are found in the dermal papillae of buffalo skin. The capillary loops encircling the hair follicle are more frequent in cattle than in buffaloes. The blood capillaries supplying the sebaceous glands are more numerous in the buffalo than in cattle. The blood supply of sweat glands is poor in both species.6. There are age differences in the skin histology. The number of hair follicles per sq.cm. of skin in a 5-months-old embryo, calf at birth, and adult buffaloes is 10560, 1248 and 400 respectively. There are no skin glands in the 1-month and 5-months-old embryos. The sweat gland in the calf is small in size and similar in structure to that of the adult. Calves have fewer sweat glands than adults.7. The body conformation and the degree of pigmentation are affected by species, breed and locality.8. The secreting activity of the sweat glands may be affected by the locality.9. It seems that there are species differences in the mechanism of heat convection and radiation, insensible perspiration and sensible perspiration, due to histological differences.


1952 ◽  
Vol 42 (1-2) ◽  
pp. 155-158 ◽  
Author(s):  
S. H. Yang

1. Histochemical tests have been applied to the socalled sweat glands and their secretions of Zebu and Ayrshire cattle, the former to only a limited extent.2. For skin specimens of Ayrshire cattle positive reactions were obtained for ribonucleoprotein, arginine and alkaline phosphatase. Negative reactions were obtained for desoxyribonucleoprotein and acid glycerophosphatase.3. Neither the sweat glands of Ayrshire cattle nor those of Zebu cattle gave positive reactions for fats, lipids or cholesterol and its esters, although these were all present in the sebaceous glands of both breeds. Detectable amounts of phospholipid were not found in the sweat glands of the Ayrshire cattle and their secretions.4. The chemical composition of the secretion of bovine sweat glands differs markedly from that of human eccrine or apocrine sweat glands in not containing detectable amounts of glycogen, lipids and associated compounds or iron.


1969 ◽  
Vol 20 (2) ◽  
pp. 395 ◽  
Author(s):  
YS Pan ◽  
SM Donegan ◽  
RH Hayman

Sweating rates at five body regions on four Jersey and four Sahiwal x Jersey crossbred heifers were measured in a hot room under three treatments differing in temperature and duration. The correlations between sweating rate and some quantitative components of sweat gland volume for a given area of skin were examined. Differences in sweating rate between body regions, interactions between breed and body region in sweating rate, and differences in sweating rate for the various treatments were all shown to be statistically significant. There was no significant interaction between body regions and treatment in sweating rate.Between body regions within an animal, there was a positive correlation between sweat gland population density and sweating rate and a negative correlation between mean sweat gland volume and sweating rate. This negative correlation was associated with the fact that regions with high sweat gland population density also tended to have smaller sweat glands and vice versa. Indications of a positive correlation between the total sweat gland volume per unit area and sweating rate were also found, though none of these approached statistical significance.


1992 ◽  
Vol 133 (3) ◽  
pp. 467-NP ◽  
Author(s):  
R. Choudhry ◽  
M. B. Hodgins ◽  
T. H. Van der Kwast ◽  
A. O. Brinkmann ◽  
W. J. A. Boersma

ABSTRACT A mouse monoclonal antibody against the N-terminal region of human androgen receptor (AR) was used to identify receptors by immunoperoxidase staining in frozen serial sections of skin from scalp, face, limb and genitalia of men and women aged 30–80 years. AR staining was restricted to cell nuclei. In sebaceous glands, AR were identified in basal and differentiating sebocytes. The percentage of receptor-positive basal sebocyte nuclei in the temple/forehead region was greater in males (65%) than in females (29%). AR staining was restricted to the cells of dermal papillae in anagen and telogen hair follicles. The percentage of dermal papillae containing AR was greater in males (58%) than in females (20%). The number of positively stained dermal papillae was lowest in female scalp skin. In 163 hair follicles sectioned, AR were absent from germinative matrix, outer root sheath (including the bulge region), inner root sheath, hair shaft and hair bulb, and from the capillaries present in some large dermal papillae. AR were present in pilosebaceous duct keratinocytes, suggesting that androgens may influence pilosebaceous duct keratinization. AR were also identified in interfollicular epidermal keratinocytes and dermal fibroblasts although, in both cell types, intensity and frequency of staining were greatest in genital skin. AR were identified in luminal epithelial cells of apocrine glands in genital skin and in certain cells of the secretory coils of eccrine sweat glands in all body sites. This study indicates that androgens regulate sebaceous gland and hair growth by acting upon two different types of target cells, the epithelial sebocytes of sebaceous glands and the mesenchymal cells of the hair follicle dermal papilla. AR staining in either cell type was not influenced by age in adults. The distribution of AR in human skin is consistent with the diverse effects of androgens on the structure and function of skin and its appendages. Journal of Endocrinology (1992) 133, 467–475


1973 ◽  
Vol 21 (2) ◽  
pp. 153 ◽  
Author(s):  
AG Lyne ◽  
DE Hollis

Development of horns has been studied in 20 foetuses ranging in age from 55 to 144 days of gestation, and in 16 lambs, ranging in age from birth to 42 days. Samples from one adult have also been examined. An increase in the thickness of the epidermis appears to be the first indication of horn development, recognizable in a 75-day-old male foetus and in an 84-day-old female foetus. Primary hair follicles develop in the horn region and produce emerging hairs, but these follicles later degenerate and disappear. The sweat glands and sebaceous glands formed in association with these follicles also degenerate, usually after hair growth has ceased. Fusion of primary follicles is a common feature in the horn growing skin, particularly before hair formation; a common connective tissue sheath surrounds the lower parts of these fused follicles. No secondary follicles are formed in the horn region but some branching of the primary follicles has been observed. By 118 days of gestation the epidermis in the horn region becomes greatly thickened, with very long dermal papillae which are well vascularized and innervated. Medulla-like columns of cells are formed above each dermal papilla and these cells keratinize later than the cells between the columns. These medullary cells remain in contact with each other longer than do the other cells of the horny sheath. Numerous arteriovenous anastomoses, which develop at two levels in the dermis of the horn region, are in continuity with capillaries which enter the dermal papillae of the epidermis. An outgrowth of bone from the frontal region of the skull, which later becomes the bony core of the horn, is first seen in a male foetus at 118 days. Acetylcholinesterase-positive branched cells (Langerhans cells), present in the lower part of the thick epidermis of developing horns, are not discernible in fully formed horns.


2019 ◽  
Vol 27 (1) ◽  
pp. 39-42
Author(s):  
A. B. Kiladze ◽  
N. K. Dzhemukhadze

The activity of acid phosphatase, alkaline phosphatase and adenosine triphosphatase in the eccrine and sebaceous glands of the skin of the soles of the paws of male and female Norway rats was studied by histochemiсal methods. Using the methods of qualimetric analysis, we presented a digitalized form of the enzyme activity, which made it possible to calculate sexual dimorphism indices, reflecting quantitative differences in the enzymatic activity of the skin glands in males and females of Norway rats. For acid phosphatase activity, the sexual dimorphism index was equal to 0.50 in the eccrine glands and equal to 0.33 in the sebaceous glands. For alkaline phosphatase activity, values of sexual dimorphism indices were equal to –0.25 and 0.33 correspondingly, and for adenosine triphosphatase values of sexual dimorphism indices were equal to –0.33 and 0.50. Digital analogues of the histoenzymatic activity of the skin glands were presented as coordinates in three-dimensional space. Using the methods of analytical geometry, we calculated the values of intersexual distances (1.73 for eccrine glands and 1.73 for sebaceous glands), reflecting the cumulative differences in the activity of three types of phosphatases, which can be considered as an integral indicator of sexual dimorphism. Histochemical activity entropy is significant in the eccrine glands. Male entropy value (0.842 bit) was less than female entropy value (0.915 bit), because total actual activity of the males’ phosphatases was greater (220% of 300%) than total actual activity of the females’ phosphatases (200% of 300%). High entropy level of phosphatase activity was typical for male sebaceous glands (0.998 bit), where the general level of enzymatic activity was significantly reduced (160% of 300%). Because of the highest total actual phosphatase activity of female sebaceous glands (220% of 300%), entropy value was the lowest (0.842 bit). The obtained results show not only sexual dimorphism by histochemical parameters but show different communicational levels of male and female Norway rats, taking into account the important role of the plantar glands as sources of chemical signals determining the character of marking behaviour.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
František Vejmělka ◽  
Jan Okrouhlík ◽  
Matěj Lövy ◽  
Gabriel Šaffa ◽  
Eviatar Nevo ◽  
...  

AbstractThe relatively warm and very humid environment of burrows presents a challenge for thermoregulation of its mammalian inhabitants. It was found that African mole-rats dissipate body heat mainly through their venter, and social mole-rats dissipate more body heat compared to solitary species at lower temperatures. In addition, the pattern of the ventral surface temperature was suggested to be homogeneous in social mole-rats compared to a heterogeneous pattern in solitary mole-rats. To investigate this for subterranean rodents generally, we measured the surface temperatures of seven species with different degrees of sociality, phylogeny, and climate using infrared thermography. In all species, heat dissipation occurred mainly through the venter and the feet. Whereas the feet dissipated body heat at higher ambient temperatures and conserved it at lower ambient temperatures, the ventral surface temperature was relatively high in all temperatures indicating that heat dissipation to the environment through this body region is regulated mainly by behavioural means. Solitary species dissipated less heat through their dorsum than social species, and a tendency for this pattern was observed for the venter. The pattern of heterogeneity of surface temperature through the venter was not related to sociality of the various species. Our results demonstrate a general pattern of body heat exchange through the three studied body regions in subterranean rodents. Besides, isolated individuals of social species are less able to defend themselves against low ambient temperatures, which may handicap them if staying alone for a longer period, such as during and after dispersal events.


2019 ◽  
Vol 33 (6) ◽  
pp. 494-503
Author(s):  
Ekarat Sombatsawat ◽  
Titaporn Luangwilai ◽  
Parichat Ong-artborirak ◽  
Wattasit Siriwong

Purpose The purpose of this paper is to explore the prevalence of musculoskeletal disorders (MSDs) and determine factors influencing MSDs among rice farmers. Design/methodology/approach A cross-sectional study was carried out among 156 rice farmers from 14 villages in Tarnlalord sub-district, Phimai district, Nakhon Ratchasima province, Thailand, from February 2017 to March 2017. Face-to-face interviews, including demographics, work characteristics and musculoskeletal pain, were conducted using a modified standardized Nordic questionnaire. Findings The results revealed that both 78 males and 78 females participated in the study to which the average of age and body mass index (BMI) was 45.5±11.4 years and 24.9±4.0 kg/m2, respectively. All rice farmers reported MSDs in at least one body region during the six months preceding the interview. The highest prevalence of MSDs showed 86.5 percent in the lower back area, followed by 85.9 percent in the neck, and 80.7 percent in the shoulders. The analysis of binary logistic regression and Spearman’s rank correlation showed that factors such as gender, age, BMI, work experience and farm size influence MSDs’ occurrence, and pain severity in one or more body regions (p < 0.05). Originality/value Musculoskeletal injuries are a significant health problem in rice farmers. The study indicated that appropriate agricultural practices such as working posture, equipment size selection and carrying loads should be recommended to prevent MSDs. Thus, the occupational health and safety services in agricultural workers are needed.


2018 ◽  
Vol 4 (12) ◽  
pp. eaau6252 ◽  
Author(s):  
Yao Guo ◽  
Weixuan Zhang ◽  
Hanchun Wu ◽  
Junfeng Han ◽  
Yongliang Zhang ◽  
...  

The edges of layered materials have unique properties that substantially differ from the body regions. In this work, we perform a systematic Raman study of the edges of various layered materials (MoS2, WS2, WSe2, PtS2, and black phosphorus). The Raman spectra of the edges feature newly observed forbidden Raman modes, which are originally undetectable from the body region. By selecting the edge type and the polarization directions of the incident and scattered light, all forbidden Raman modes are distinctly detected. Optical simulations show that the edges of layered materials drastically distort the electromagnetic fields of both the incident and scattered light, so that the light interacts with the edges in a distinct way, which differs from its interactions with the body regions.


2019 ◽  
Vol 40 (2) ◽  
pp. 149-162 ◽  
Author(s):  
Andre C. Bruinjé ◽  
Mauricio O. Moura ◽  
Bruno S. Maggi ◽  
Vinicius A. São-Pedro ◽  
Daniel M.A. Pessoa ◽  
...  

Abstract Animal colouration plays a key role in inter and intraspecific interactions, pre-eminently in mate signalling. When multiple types of colouration occur within sexes it is possible that they show alternative reproductive strategies. In lizards, most colouration studies do not incorporate how colour is perceived by conspecifics. Here, we used unbiased colour analysis methods (spectrophotometry and visual modelling) to test for sexual dimorphism and within male dichromatism in the Striped Lava Lizard. We found that males express two distinct colourations that are different from females in several dorsal and ventral body regions. Our results showed UV reflection at the throat, an important body region for signalling. Ventral patches, the coloured badge seen in adult males of Tropidurus spp., have two distinct colour classes within males (Y and B males). Morphs are best discriminated by blue and yellow chroma, and brightness. Body size had little influence on colouration, suggesting that colour may be linked to inheritance rather than growth. Our study clearly shows sexual dichromatism and the existence of colour morphs in this species. Moreover, morph differences in colouration are perceptible by conspecifics. These differences are not only between ventral patches, but also in other body parts such as the dorsum, previously considered as cryptic by human observers. We suggest that colouration at the ventral patches and throat might play a role in intraspecific interactions. Patches increase colour intensity during breeding season and are likely to be costly by pigment-based expression, whereas throat’s UV reflection might have a cost infringed by conspicuousness.


Sign in / Sign up

Export Citation Format

Share Document