Aeluropus littoralis maintains adequate gas exchange, pigment composition and phenolic contents under combined effects of salinity and phosphorus deficiency

2017 ◽  
Vol 65 (5) ◽  
pp. 453 ◽  
Author(s):  
Ons Talbi Zribi ◽  
Kamel Hessini ◽  
Najla Trabelsi ◽  
Fethia Zribi ◽  
Abdelwahed Hamdi ◽  
...  

Salinity and phosphorus (P) deficiency are important environmental factors that decrease plant growth and productivity throughout the world. These two stresses frequently coexist in calcareous salt-affected soils. To better understand how plants adapt to these combined stresses, we investigated the interactive effects of salinity and P availability on photosynthetic activity, leaf pigment, phenolic compounds content and antioxidant activity in Aeluropus littoralis (Gouan)Parl., a promising C4 monocotyledonous halophyte that usually grows in dry salty areas or marshes. Plants were grown hydroponically under low or sufficient P supply (5 or 180 µM KH2PO4 respectively), with or without 400 mM NaCl. When individually applied, salinity and P deficiency stresses significantly restricted shoot and root relative growth rate, with a more marked effect of the former stress. However, the effects of the two stresses combined were non-additive on plant growth. Our results showed that salinity and P deficiency stresses applied individually or combined have no significant effect on CO2 assimilation rate, instantaneous water-use efficiency (WUEi), and leaf malondialdehyde content. Chlorophyll, carotoneoids, anthocyanins and phenolics content increased significantly under both P shortage and salt stresses applied individually or combined. Furthermore, a strong correlation was found between both total antioxidant capacity and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity and shoot phenolics and carotenoids contents. These results suggest that the ability of A. littoralis to cope with both P deficiency and high salt stresses is a result of several mechanisms mainly involved in the conservation of the integrity of the photosynthetic apparatus. Secondary metabolites – mainly phenolic compounds and carotenoids – play an important role in the protection of A. littoralis plants against oxidative damage under combined high salinity and P deficiency stresses.


2021 ◽  
Vol 22 (10) ◽  
pp. 5162
Author(s):  
Leangsrun Chea ◽  
Birgit Pfeiffer ◽  
Dominik Schneider ◽  
Rolf Daniel ◽  
Elke Pawelzik ◽  
...  

Low phosphorus (P) availability is a major limiting factor for potatoes. P fertilizer is applied to enhance P availability; however, it may become toxic when plants accumulate at high concentrations. Therefore, it is necessary to gain more knowledge of the morphological and biochemical processes associated with P deficiency and toxicity for potatoes, as well as to explore an alternative approach to ameliorate the P deficiency condition. A comprehensive study was conducted (I) to assess plant morphology, mineral allocation, and metabolites of potatoes in response to P deficiency and toxicity; and (II) to evaluate the potency of plant growth-promoting rhizobacteria (PGPR) in improving plant biomass, P uptake, and metabolites at low P levels. The results revealed a reduction in plant height and biomass 60–80% under P deficiency compared to P optimum. P deficiency and toxicity conditions also altered the mineral concentration and allocation in plants due to nutrient imbalance. The stress induced by both P deficiency and toxicity was evident from an accumulation of proline and total free amino acids in young leaves and roots. Furthermore, root metabolite profiling revealed that P deficiency reduced sugars by 50–80% and organic acids by 20–90%, but increased amino acids by 1.5–14.8 times. However, the effect of P toxicity on metabolic changes in roots was less pronounced. Under P deficiency, PGPR significantly improved the root and shoot biomass, total root length, and root surface area by 32–45%. This finding suggests the potency of PGPR inoculation to increase potato plant tolerance under P deficiency.



2020 ◽  
Vol 21 (3) ◽  
Author(s):  
Magdalena Woźniak ◽  
Lucyna Mrówczyńska ◽  
Anna Sip ◽  
Marta Babicka ◽  
Tomasz Rogoziński ◽  
...  

Introduction. Honey, propolis and pollen belong to bee products that have beneficial biological properties. These products exhibit e.g. antibacterial, antifungal and antioxidant properties. Due to biological activity and natural origin, bee products are used, e.g. in the food industry, cosmetology and pharmacy. Aim. The aim of the study was to compare the antioxidant and antibacterial activity of honey, propolis and pollen from an apiary located in Wielkopolska Province. Material and methods. Honey, propolis and pollen used in this study came from the same apiary located in Wielkopolska Province. The antioxidant potential of bee products was evaluated applying DPPH· free radical scavenging activity assay. The antimicrobial activity of the tested bee products was determined by the point-diffusion method against 13 strains of pathogenic and potentially pathogenic bacteria. In addition, the total content of phenolic compounds in honey, propolis and pollen was determined by the colorimetric method. Results. Propolis exhibited higher antioxidant activity, in comparison to honey and pollen. The antiradical activity of propolis was equal to 80% approx. activity of Trolox, the standard antioxidant. Among tested bee products, propolis was characterized by the highest total phenols content. In addition, honey, propolis and pollen showed antagonistic activity against tested bacterial strains. Conclusions. The obtained results indicate that among the tested bee products of native origin, i.e. honey, propolis and pollen, propolis characterized by the highest antioxidant activity and the total content of phenolic compounds. In addition, all bee products showed bactericidal activity against the tested bacterial strains.



Botanica ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 76-87
Author(s):  
Aziza Lfitat ◽  
Hind Zejli ◽  
Abdelkamel Bousselham ◽  
Yassine El Atki ◽  
Badiaa Lyoussi ◽  
...  

AbstractWe conducted this study to determine and compare the content of phenolic compounds and flavonoids in the argan and olive leaves as well as their antioxidant capacity in aqueous, methanolic, and ethyl acetate extracted fractions. In vitro antioxidant activity was evaluated in comparison with synthetic antioxidants by assessing DPPH• radical scavenging capacity, ferric reducing antioxidant power, scavenging ability by inhibiting the β-carotene/linoleic acid emulsion oxidation, and by the ABTS radical scavenging activity assay. Total phenolic content in argan samples ranged from 221.69 ± 2.07 to 1.32 ± 0.01 mg GAE/g DW and in olive samples from 144.61 ± 0.82 to 1.21 ± 0.02 mg GAE/g DW. Total flavonoids content in argan samples varied from 267.37 ± 1.12 to 25.48 ± 0.02 mg QE/g DW, while in olives from 96.06 ± 0.78 to 10.63 ± 0.05 mg QE/g DW. In vitro antioxidant studies strongly confirmed the antioxidant potency of argan and olive leaves and their richness in secondary metabolites that are effective in free radicals scavenging and metal chelating capacities, indicating their antioxidant power.



2014 ◽  
Vol 59 (3) ◽  
pp. 282-292 ◽  
Author(s):  
Ki Yuol Jung ◽  
Jee Yeon Ko ◽  
Jae Saeng Lee ◽  
Mi Sun Jeong ◽  
In Seok Oh ◽  
...  


2003 ◽  
Vol 128 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Md. Shahidul Islam ◽  
Makoto Yoshimoto ◽  
Koji Ishiguro ◽  
Shigenori Okuno ◽  
Osamu Yamakawa

The phenolic content and the radical scavenging activity were compared in leaves of sweetpotato (Ipomoea batatas L.) cultivars Shimon-1, Kyushu-119 and Elegant Summer grown under different temperature and shading conditions. Compared to cultivar differences, there was less effect of temperature and shading on the total phenolic content in sweetpotato leaves, however certain polyphenolic components differed widely among the treatments. The positive correlation between the radical scavenging activity and the level of total phenolics (r = 0.62) suggests that phenolic compounds are important antioxidant components of sweetpotato leaves. All the reverse-phase high-performance liquid chromatography (RP-HPLC) profiles of the cultivars tested showed peaks at the same retention times but peak areas of individual phenolic compounds differed with respective temperature and shading treatments. The phenolic compounds identified in the sweetpotato leaf were caffeic acid, chlorogenic acid, 4,5-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, 3,4-di-O-caffeoylquinic acid, and 3,4,5-tri-O-caffeoylquinic acid. Most of the phenolic compounds were highest in leaves from plants grown at 20 °C without shading except 4,5-di-O-caffeoylquinic acid. The results indicate that growing leaves under moderately high temperatures and in full sun enhances the accumulation of phenolic components. These phenolic components have possible value in enhancing human health.



Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 210 ◽  
Author(s):  
Pascual García-Pérez ◽  
Eva Lozano-Milo ◽  
Mariana Landín ◽  
Pedro Pablo Gallego

We combined machine learning and plant in vitro culture methodologies as a novel approach for unraveling the phytochemical potential of unexploited medicinal plants. In order to induce phenolic compound biosynthesis, the in vitro culture of three different species of Bryophyllum under nutritional stress was established. To optimize phenolic extraction, four solvents with different MeOH proportions were used, and total phenolic content (TPC), flavonoid content (FC) and radical-scavenging activity (RSA) were determined. All results were subjected to data modeling with the application of artificial neural networks to provide insight into the significant factors that influence such multifactorial processes. Our findings suggest that aerial parts accumulate a higher proportion of phenolic compounds and flavonoids in comparison to roots. TPC was increased under ammonium concentrations below 15 mM, and their extraction was maximum when using solvents with intermediate methanol proportions (55–85%). The same behavior was reported for RSA, and, conversely, FC was independent of culture media composition, and their extraction was enhanced using solvents with high methanol proportions (>85%). These findings confer a wide perspective about the relationship between abiotic stress and secondary metabolism and could serve as the starting point for the optimization of bioactive compound production at a biotechnological scale.



2009 ◽  
Vol 4 (5) ◽  
pp. 1934578X0900400 ◽  
Author(s):  
Aneta Wojdyłto ◽  
Jan Oszmiański

Fruits are one of the most important sources of phenolic compounds in our diet. Many of these compounds exhibit a wide range of biological activities, especially antioxidant activity. The objective of this study was to determine the composition and antioxidant activity of phenolic compounds found in fruit juice obtained from buckthorn, flowering quince, rowanberry and hawthorn. Hydroxycinnamic acids (neochlorogenic and chlorogenic acid) and procyanidins were the main phenolics in rowanberry juice. The highest level of flavonols (quercetin derivatives) was found in sea buckthorn. All juices showed strong free-radical scavenging activity against ABTS•+ radicals and ferric reducing ability measured by the FRAP method. The strongest antioxidant activity was found in rowanberry juice, but the lowest was measured in hawthorn and sea buckthorn juices.



2010 ◽  
Vol 5 (11) ◽  
pp. 1934578X1000501 ◽  
Author(s):  
Cheng-Dong Zheng ◽  
Gang Li ◽  
Hu-Qiang Li ◽  
Xiao-Jing Xu ◽  
Jin-Ming Gao ◽  
...  

Thirty-eight phenolic compounds (including 31 flavonoids) were examined for their DPPH radical-scavenging activities, and structure-activity relationships were evaluated. Specifically, the presence of an Ortho-dihydroxyl structure in phenolics is largely responsible for their excellent antiradical activity. 3-Hydroxyl was also essential to generate a high radical-scavenging activity. An increasing number of hydroxyls on flavones with a 3′,4′-dihydroxyl basic structure, the presence of a third hydroxyl group at C-5′, a phloroglucinol structure, glycosylation and methylation of the hydroxyls, and some other hydroxyls, for example 5-, and 7-hydroxyl in ring A, decreased the radical-scavenging activities of flavonoids and other phenolics.



2017 ◽  
Vol 39 (1) ◽  
pp. 43 ◽  
Author(s):  
Mayara Neves Santos Guedes ◽  
Rafael Pio ◽  
Luana Aparecida Castilho Maro ◽  
Fabíola Fonseca Lage ◽  
Celeste Maria Patto de Abreu ◽  
...  

Blackberries are an important option for the diversification of fruit crops. However, there is currently no literature regarding plant cultivation in high-altitude tropical climates. Knowledge of the phenolic composition of blackberries is essential because variations in the levels of these components may exist between cultivars and may depend on environmental conditions. High performance liquid chromatography (HPLC) was used to evaluate the total phenol content of different blackberry cultivars (Arapaho, Brazos, Cainguangue, Cherokee, Choctaw, Comanche, Ébano, Guarani, Tupy and Xavante). Free radical scavenging activity in these cultivars was assayed using a DPPH test. The HPLC-UV chromatogram of blackberry fruit extracts at 280 nm revealed the presence of phenolic compounds. The results showed significant differences in the levels of phenolic compounds in the blackberry cultivars tested. Antioxidant activity was evaluated using the ABTS free radical and ranged from 2.7 ± 0.1 to 19 ± 2 μmole of Trolox equivalents per gram of sample (b.u.). These results are in good correlation with the phenolic contents of the blackberries tested. The Xavante blackberry cultivar had the highest levels of polyphenols that could be individually identified. Catechin polyphenols were found to be the main component in the blackberry varieties tested. 



Sign in / Sign up

Export Citation Format

Share Document