Factors affecting growth and distribution of kauri (Agathis australis Salisb.) II. Effect of light intensity on seedling growth

1959 ◽  
Vol 7 (3) ◽  
pp. 268 ◽  
Author(s):  
RL Bieleski

The effect of various light intensities on the growth of kauri seedlings is described. Daylight was screened to the required level with lath screens. There was no significant effect of light on seedling mortality in the light intensity range 0.40–0.02 full daylight. Seedling morphology was affected by light intensity, the ratios stem dry weight/root dry weight, stem length/root length, and fresh weight / dry weight increasing significantly with decreasing light intensity. Seedling growth was a linear function of log (light intensity), the growth rates and assimilation rates being similar to those for other forest tree seedlings. The compensation point was at 0.009 full daylight, close to the low light intensity limit to seedling establishment in the field but low compared with those of other tree seedlings. There was no high light intensity limit to seedling growth, such as that shown for seedling establishment in the field. The apparent discrepancy is discussed.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Fujita

AbstractThis study examined the mechanisms of facilitation and importance of seed dispersal during establishment of forest tree species in an Afrotropical woodland. Seedling survival of Syzygium guineense ssp. afromontanum was monitored for 2.5 years at four different microsites in savannah woodland in Malawi (southeastern Africa) under Ficus natalensis (a potential nurse plant), Brachystegia floribunda (a woodland tree), Uapaca kirkiana (a woodland tree), and at a treeless site. The number of naturally established forest tree seedlings in the woodland was also counted. Additionally, S. guineense ssp. afromontanum seed deposition was monitored at the four microsites. Insect damage (9% of the total cause of mortality) and trampling by ungulates (1%) had limited impact on seedling survival in this area. Fire (43%) was found to be the most important cause of seedling mortality and fire induced mortality was especially high under U. kirkiana (74%) and at treeless site (51%). The rate was comparatively low under F. natalensis (4%) and B. floribunda (23%), where fire is thought to be inhibited due to the lack of light-demanding C4 grasses. Consequently, seedling survival under F. natalensis and B. floribunda was higher compared with the other two microsites. The seedling survival rate was similar under F. natalensis (57%) and B. floribunda (59%). However, only a few S. guineense ssp. afromontanum seedlings naturally established under B. floribunda (25/285) whereas many seedlings established under F. natalensis (146/285). These findings indicate that the facilitative mechanism of fire suppression is not the only factor affecting establishment. The seed deposition investigation revealed that most of the seeds (85%) were deposited under F. natalensis. As such, these findings suggest that in addition to fire suppression, dispersal limitations also play a role in forest-savannah dynamics in this region, especially at the community level.


2018 ◽  
Author(s):  
Varun Varma ◽  
Mahesh Sankaran

AbstractNutrient deposition can modify plant growth rates and potentially alter the susceptibility of plants to disturbance events, while also influencing properties of disturbance regimes. In mixed tree-grass ecosystems, such as savannas and tropical dry forests, tree seedling growth rates strongly influence the ability of seedlings to survive fire (i.e. post-fire seedling survival), and hence, vegetation structure and tree community composition. However the effects of nutrient deposition on the susceptibility of recruiting trees to fire are poorly quantified. In a field experiment, seedlings of multiple N-fixing and non-N-fixing tropical dry forest tree species were exposed to nitrogen (N) and phosphorus (P) fertilisation, and fire. We quantified nutrient-mediated changes in a) mean seedling growth rates; b) growth rates of the fastest growing individuals and c) post-fire seedling survival. N-fixers had substantially higher baseline post-fire seedling survival, that was unaffected by nutrient addition. Fertilisation, especially with N, increased post-fire survival probabilities in non-N-fixers by increasing the growth rates of the fastest growing individuals. These results suggest that fertilisation can lead to an increase in the relative abundance of non-N-fixers in the resprout community, and thereby, alter the community composition of tropical savanna and dry forest tree communities in the long-term.


2010 ◽  
Vol 2 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Ayobola A. Moninuola SAKPERE ◽  
Matthew OZIEGBE ◽  
Idowu Arinola BILESANMI

This study examined the allelopathic effect of Ludwigia decurrens and L. adscendens exudates on germination, seedling growth (hypocotyl and radicle elongation), seedling mortality, vegetative growth and reproductive yield of Corchorus olitorious. Ludwigia decurrens, L. adscedens exudates and tap water (control) were applied to seeds of Corchorus olitorious over a period of 15 days and to 3 weeks old seedling for a period of 4 weeks. Ludwigia exudates had no inhibitory effect on the germination percentage of C. olitorious, but the exudates from the two Ludwigia spp. induced mortality rate of the 15 day old seedlings (control: 5.00%, L. decurrens: 17.50%, L. adscendens: 26.88%) and a significant decrease in seedling elongation (hypocotyl and radicle length) of C. olitorious. For the vegetative growth experiment, results showed that the stem length, stem fresh weight and leaf area of C. olitorious were significantly inhibited during week 6 (P


2001 ◽  
Vol 28 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Ekta Khurana ◽  
J.S. Singh

Dry forests are among the most threatened ecosystems and have been extensively converted into grasslands, secondary forest, savanna or agricultural land. Knowledge of seed germination and seedling establishment is required for the success of efforts on restoration of these forests. This review focuses on the ecological requirements at seed and seedling stages, and collates the current knowledge of seed viability, dormancy, germination pattern and seedling behaviour of dry tropical tree species. The spatio-temporal variations within the tropical dry forest biome in soil moisture, light, temperature, nutrients and intensity of predation, significantly affect the seed and seedling traits of component species. The majority of dry tropical species possess orthodox seeds which are characterized by dormancy, while a few have recalcitrant seeds which possess little or no dormancy. Seed coat dormancy, which can be overcome by mechanical or acid scarification or sometimes by transit through animal guts, is most prevalent in the dry tropical forest species. Persistent species dominating the undisturbed portions of the forest have bigger seeds compared to those that mostly occur in disturbed regions and require shade for the survival of their seedlings. Shade demand is associated with drought endurance, and may be absolute in species such as Guettarda parviflora and Coccoloba microstachya, or facultative as in Plumeria alba and Bursera simaruba. The fluctuation in temperature significantly affects seed germination in several species of dry Afromontane forest trees of Ethiopia. Seedling mortality is primarily a function of moisture stress during the dry period. Adaptive responses of seedlings to drought stress include increased chlorophyll content, for example in Acacia catechu, and root biomass, as in several dry forest species (for example Drypetes parvifolia, Teclia verdoornia) of Ghana. Mulching, application of fertilizers, interplanting of leguminous species and mycorrhizal inoculation are useful tools for promoting seedling establishment in nutrient-poor dry tropical soils. Periodic forest fires, and predation affect recruitment and seedling development according to their intensity. Many species experiencing frequent fires have evolved thick seed coats, produce fire-hardy seedlings, or escape the effect by temporal separation of seed dispersal and fire events. Predation may result in abortion of fruits or may enhance germination and recruitment by scarification and dispersal, as in most species of the Guanacaste dry forest. Exposure to elevated CO2 has increased relative growth rate, total leaf area and water use efficiency in most of the dry tropical seedlings tested, but the magnitude of the effect has varied markedly among species. Due to the availability of a large source of energy, large seeds show higher germination percentage, greater seedling survival and increased growth. Seeds originating from different provenances exhibit differences in germination and seedling growth (for example Prosopis cineraria, Albizia lebbeck, Eucalyptus camaldulensis and Acacia mangium), efficiency of nodulation (for example Acacia nilotica, A. auriculiformis), and stress resistance (for example Populus deltoides, Dalbergia sissoo). The review points out the need for coordinated, long-term, field-based studies for identification of multiple cues and niches for germination, on seed and seedling dynamics in response to fire, and on within-species genetic variability for selection of suitable provenances. Field-based studies at species and community levels are also needed to permit manipulations of biotic components to augment the recruitment of desired species and to suppress that of undesirable species.


1977 ◽  
Vol 55 (15) ◽  
pp. 2033-2042 ◽  
Author(s):  
Allan P. Drew ◽  
William K. Ferrell

Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings were grown outdoors under 9, 44, and 100% light intensity and were sampled periodically over their first growing season for stem, leaf, and root dry weights, and the data were analyzed allometrically. In addition, seedlings were assessed for number of needles per stem length, ratio leaf surface area: leaf dry weight, and maximum seedling dry weight. The experiment was repeated during a 2nd, warmer, year.Maximum growth occurred under partial shade and moderate temperatures. In the 1st year, seedlings allocated progressively more dry matter to shoot than to root growth as light intensity decreased. In the 2nd year, root growth was favored at the expense of shoot growth. In both years, shoot structural alterations were such as to favor enhanced photosynthesis under low light. Acclimative changes are explained in terms of an interaction between light, temperature, and seedling size.A second experiment showed that seedlings grown under low light set a terminal bud sooner in the fall and broke bud sooner the next spring than seedlings preconditioned to high light. They also suffered more spring frost damage and showed greater incidence of lammas growth in the 2nd year. No effect of 1st-year preconditioning on timing of budbreak was evident in the 3rd year.


2014 ◽  
Vol 36 (2) ◽  
pp. 479-486
Author(s):  
Paulo Dornelles ◽  
Fabiano Guimarães Silva ◽  
Clenilso Sehnen Mota ◽  
João das Graças Santana

This study aimed to evaluate the effect of substrate on growth, emergence, nutrition, and quality of Anacardium othonianum Rizz. (cerrado cashew tree) seedlings. The experiment was conducted in a greenhouse at the Plant Tissue Culture Laboratory on the Rio Verde campus. The following substrates were used: 1) Bioplant®, 2) Mecplant® (MP) + carbonized rice husk (CRH) (7:3), 3) fine-grained vermiculite (FGV), 4) FGV+CRH (3:1), 5) FGV+CRH (1:1), 6) FGV+CRH (1:3), and 7) sugarcane bagasse (SB) + sugarcane mill filter cake (FC) (3:2). Emerged seedlings were counted at 2-day intervals for 38 days following emergence of the first seedling. At 39, 64, and 89 days after seeding (DAS), the following variables were measured: stem length (SL), stem diameter (SD), and number of leaves (NL). Accumulated dry weight, quality indices, and leaf macro- and micronutrient levels were determined at 89 DAS. Plants grown in the FGV and FGV+CFH (1:3) substrates had shorter stem lengths than the plants grown in other substrates. Increases in seedling growth were smaller between 64 and 89 DAS compared to the initial period of the experiment. The highest leaf N concentrations were found in the SB+FC substrate treatment group; P and K concentrations were higher for the MP+CRH (7:3), SB+FC, and Bioplant® treatments; and Ca levels were higher for the SB+FC and MP+CRH (7:3) substrate treatments. The MP+CRH (7:3) substrate treatment group had the highest leaf B and Mn micronutrient concentrations, and plants from the Bioplant® substrate group had the highest leaf B micronutrient content. Mg, S, Cu, Zn, and Fe concentrations did not differ among the different substrates. The plant traits that differed most among the treatments included stem length for the FGV and FGV+CRH (1:3) substrate groups and leaf nutrient concentrations, which were higher for the SB+FC group followed by the MP+CRH and Bioplant® treatments.


HortScience ◽  
2010 ◽  
Vol 45 (6) ◽  
pp. 863-867 ◽  
Author(s):  
Zengqiang Ma ◽  
Shishang Li ◽  
Meijun Zhang ◽  
Shihao Jiang ◽  
Yulan Xiao

Anoectochilus formosanus, a medicinal plant used to treat hypertension, lung disease, and liver disease, was grown to maximize biomass and secondary metabolite production in a controlled environment under four levels of photosynthetic photon flux (PPF), namely, 10, 30, 60, or 90 μmol·m−2·s−1, that is L10, L30, L60, and L90 treatments, respectively. On Day 45, all growth values were greatest for the L30 plants. Dry weight was lowest for the L10 plants. Leaf area, stem length, and fresh weight were lowest for the L90 plants. The chlorophyll concentration was highest in the L10 treatment and decreased with increasing PPF. Electron transport ratios of leaves were highest in the L30 treatment and lowest in the L90 for the second leaf (counted down from the apex) and in the L10 for the third leaf. An increase in light intensity from 10 to 60 μmol·m−2·s−1 increased the superoxide dismutase activity and was associated with an increase in the total flavonoid concentration. The total flavonoid concentration (mg·g−1 DW) was greatest in the L60 and lowest in the L90. However, the total flavonoid content (mg/plant) was highest in the L30 plants as a result of great biomass. The results indicated that A. formosanus is a typical shade plant suitable to grow under low light intensity at PPF of 30 to 50 μmol·m−2·s−1 for both growth and production of total flavonoid. A light intensity of 90 μmol·m−2·s−1 induced stress on plant growth and reduced photosynthetic capability and the flavonoid accumulation.


2013 ◽  
Vol 41 (1) ◽  
pp. 219 ◽  
Author(s):  
Rana KURUM ◽  
Kamile ULUKAPI ◽  
Köksal AYDINŞAKİR ◽  
Ahmet Naci ONUS

In this study, the effects of different salinity levels (0, “control”, 2, 4, 8, and 12 dS m-1) on seedling growth of Obez, RS 841 and Ferro F1 pumpkin varieties, widely used around the world as rootstock, were investigated. Seedlings grown under saline conditions were investigated for plant main stem length, plant length, root length, shoot length, root fresh weight, root dry weight, shoot fresh weight, shoot dry weights and ion concentrations (Ca++, K+, Na+) in the leaves of pumpkin varieties. The results revealed that root length, shoot length, root fresh weight, root dry weight, shoot fresh weight and shoot dry weights tend to decrease when the electrical conductivity of the solution is increased. Results indicated that these varieties responded different to some investigated parameters under saline conditions.


1970 ◽  
Vol 46 (3) ◽  
pp. 229-230 ◽  
Author(s):  
C. W. Yeatman

The dry weight of 3-week-old seedlings of white spruce, Norway spruce, jack pine and Scots pine was 30–80% greater than the control when grown in atmospheres enriched 3- to 5-fold with carbondioxide. Seedlings also responded positively to a difference in light intensity. CO2 enriched atmospheres might profitably be used for the short term propagation of tree seedlings grown in greenhouses.


Sign in / Sign up

Export Citation Format

Share Document