Molecular Photodiode and Two-channel Optoelectronic Demultiplexer based on the [60]Fullerene-porphyrin Tetrad
Photoelectrodes containing Langmuir–Blodget layers of [60]fullerene-porphyrin tetrad behave like photodiodes. Upon excitation within the whole absorption spectrum of the molecule they generate photocurrent, the direction of which depends on the conducting substrate potential. At negative polarization high intensity cathodic photocurrent are observed, while at positive polarization much weaker anodic photocurrents are observed. The forward-bias to reverse-bias current ratio amounts 5:1. Therefore the [60]fullerene-porphyrin tetrad is closely related to semiconductors showing photoelectrochemical photocurrent switching effect and is a promising material for molecular optoelectronics. It can be used as a simple molecular photodiode. Assignment of logic values to polarization of the photoelectrode and to light and photocurrent pulses results in a very efficient two-channel optoelectronic demultiplexer.