Molecular Photodiode and Two-channel Optoelectronic Demultiplexer based on the [60]Fullerene-porphyrin Tetrad

2011 ◽  
Vol 64 (10) ◽  
pp. 1409 ◽  
Author(s):  
Kornelia Lewandowska ◽  
Konrad Szaciłowski

Photoelectrodes containing Langmuir–Blodget layers of [60]fullerene-porphyrin tetrad behave like photodiodes. Upon excitation within the whole absorption spectrum of the molecule they generate photocurrent, the direction of which depends on the conducting substrate potential. At negative polarization high intensity cathodic photocurrent are observed, while at positive polarization much weaker anodic photocurrents are observed. The forward-bias to reverse-bias current ratio amounts 5:1. Therefore the [60]fullerene-porphyrin tetrad is closely related to semiconductors showing photoelectrochemical photocurrent switching effect and is a promising material for molecular optoelectronics. It can be used as a simple molecular photodiode. Assignment of logic values to polarization of the photoelectrode and to light and photocurrent pulses results in a very efficient two-channel optoelectronic demultiplexer.


2016 ◽  
Vol 705 ◽  
pp. 186-189 ◽  
Author(s):  
Everjoy S. Mones ◽  
Armida V. Gillado ◽  
Marvin U. Herrera

Polymer-oxide semiconductor exhibits a promising application on electronic devices. In this study, zinc oxide-polyaniline (ZnO-PAni) junctions were constructed which showed a photodiode-like behavior. The junctions were built through connecting the electrodeposited zinc oxide to electrodeposited HCl-doped polyaniline. Without illumination, the junctions exemplify a diode-like behavior (e.g., large amount current at forward-bias while small amount of current at reverse-bias). When illuminated, the junctions exhibit a photodiode-like behavior. In such, the reverse-bias current increases with light intensity.



1999 ◽  
Vol 4 (S1) ◽  
pp. 940-945 ◽  
Author(s):  
M. Garter ◽  
R. Birkhahn ◽  
A. J. Steckl ◽  
J. Scofield

Room temperature visible and IR light electroluminescence (EL) has been obtained from Er-doped GaN Schottky barrier diodes. The GaN was grown by molecular beam epitaxy on Si substrates using solid sources (for Ga and Er) and a plasma source for N2. Transparent contacts utilizing indium tin oxide were employed. Strong green light emission was observed under reverse bias due to electron impact excitation of the Er atoms. Weaker emission was present under forward bias. The emission spectrum consists of two narrow green lines at 537 and 558 nm and minor peaks at 413, 461, 665, and 706 nm. There is also emission at 1000 nm and 1540 nm in the IR. The green emission lines have been identified as Er transitions from the 2H11/2 and 4S3/2 levels to the 4I15/2 ground state. The IR emission lines have been identified as transitions from the 4I11/2 and 4I13/2 levels to the 4I15/2 ground state. EL intensity for visible and IR light has a sub-unity power law dependence on bias current. An external quantum efficiency of 0.1% has also been demonstrated under a reverse bias current of 3.85 mA.



1992 ◽  
Vol 258 ◽  
Author(s):  
K.J.B.M. Nieuwesteeg ◽  
J. Boogaard ◽  
G. Oversluizen

ABSTRACTForward-bias current stress experiments were performed on α-Si:H p-i-n and Schottky switches at several temperatures and at current densities up to 6 A/cm2. In Schottky diodes, current stressing results in a lowering of the forward-bias SCLC current together with an increase of its thermal activation energy. The reverse current is unaffected. The rate of degradation of the forward current increases with increasing temperature. From a comparison of the degradation behaviour of Schottky's with different barrier height we find that the rate of degradation is correlated to the minority-carrier injection ratio of the Schottky contact. The effects are interpreted as being due to metastable state creation in the bulk α-Si:H. The rectifying properties of the metal-to-semiconductor contact are relatively stable to current stress.The forward-bias I-V curves of p-i-n diodes degrade much faster than those of the Schottky switches. At the same time, the reverse-bias current increases due to the stress. The lower stability to current-stress of p-i-n diodes is ascribed to the much higher hole injection in the mesa. After a short time, the reverse-bias current becomes dominated by e-h generation from the created deep states in the i-layer and then gives a direct indication of its time dependence.



2019 ◽  
Vol 8 (2) ◽  
pp. 428-437
Author(s):  
M. Azim Khairi ◽  
Rosminazuin Ab. Rahim ◽  
Norazlina Saidin ◽  
Yusof Abdullah ◽  
Nurul Fadzlin Hasbullah

This paper investigates on the reaction of 10 and 15MGy, 3MeV electron irradiation upon off-the-shelves (commercial) Silicon Carbide Schottky diodes from Infineon Technologies (model: IDH08SG60C) and STMicroelectronics (model: STPSC806). Such irradiation reduces the forward-bias current. The reduction is mainly due to the significant increase of the series resistance (i.e. Infineon: 1.45Ω at before irradiation → 121×103 Ω at 15MGy); STMicroelectronics: 1.44Ω at before irradiation → 2.1×109 Ω at 15MGy). This increase in series resistance gives 4.6 and 8.2 orders of magnitude reduction for the forward-bias current density of Infineon and STMicroelectronics respectively. It is also observed that the ideality factor and the saturation current of the diodes increases with increasing dose (i.e. ideality factor- Infineon: 1.01 at before irradiation → 1.05 at 15MGy; STMicroelectronics: 1.02 at before irradiation → 1.3 at 15MGy | saturation current- Infineon: 1.6×10-17A at before irradiation → 2.5×10-17A at 15MGy; STMicroelectronics: 2.4×10-15A at before irradiation → 8×10-15A at 15MGy). Reverse-bias leakage current density in model by Infineon increases by one order of magnitude after 15MGy irradiation, however, in model by STMicroelectronics decreases by one order of magnitude. Overall, for these particular samples studied, Infineon devices have shown to be better in quality and more radiation resistance toward electron irradiation in forward-bias operation while STMicroelectronics exhibit better characteristics in reverse-bias operation.



1986 ◽  
Vol 70 ◽  
Author(s):  
J. McGill ◽  
V. Cannella ◽  
Z. Yaniv ◽  
P. Day ◽  
M. Vijan

ABSTRACTA number of new amorphous silicon alloy microelectronic devices, including LCD active matrix displays, linear image sensors, and thin film multilayer computer memories, have been developed in our company. These applications rely heavily on the quality of the intrinsic semiconductor as well as its ability to withstand the many processing steps used in a modern photolithographic process. In this paper, we present electrical data on amorphous silicon alloy p-i-n diodes after such a process. These devices have an active area of 20μm × 20μm defined using standard photolithographic techniques and etched using a dry etch process. These diodes are characterized by ideality factors (n) of 1.4 and extrapolated reverse saturation current densities of 1013A/cm2h. The diodes exhibit nearly 10 orders of magnitude rectification at ± 3V and the reverse bias current density remains below 10-8 A/cm2 for reverse bias voltages of -15V. In pulsed forward bias, these diodes can be operated at current densities greater than 300A/cm2. Thin film amorphous silicon diodes moreover have the advantage that varying the thickness of the intrinsic layer allows the optimization of parameters such as the capacitance per unit area, the reverse bias current density and the forward bias conductance per unit area. We find that these devices are fully compatible with state of the art VLSI processing techniques and are suitable for applications in integrated circuit structures, for example rectification devices in microelectronic arrays and isolation devices in display matrices.



1998 ◽  
Vol 537 ◽  
Author(s):  
M. Garter ◽  
R. Birkhahn ◽  
A. J. Steckl ◽  
J. Scofield

AbstractRoom temperature visible and IR light electroluminescence (EL) has been obtained from Er-doped GaN Schottky barrier diodes. The GaN was grown by molecular beam epitaxy on Si substrates using solid sources (for Ga and Er) and a plasma source for N2. Transparent contacts utilizing indium tin oxide were employed. Strong green light emission was observed under reverse bias due to electron impact excitation of the Er atoms. Weaker emission was present under forward bias. The emission spectrum consists of two narrow green lines at 537 and 558 nm and minor peaks at 413, 461, 665, and 706 nm. There is also emission at 1000 nm and 1540 nm in the IR. The green emission lines have been identified as Er transitions from the 2H11/2 and 4S3/2 levels to the 4I15/2 ground state. The IR emission lines have been identified as transitions from the 4I13/2 and 4I13/2 levels to the 4I15/2 ground state. EL intensity for visible and IR light has a sub-unity power law dependence on bias current. An external quantum efficiency of 0.1% has also been demonstrated under a reverse bias current of 3.85 mA.



1992 ◽  
Vol 258 ◽  
Author(s):  
Daxing Han ◽  
Keda Wang ◽  
Marvin Silver

ABSTRACTCarrier transport properties, including mobility and carrier lifetimes, or the mobility-lifetime-product, are important parameters for the understanding of the electronic properties of amorphous silicon devices. We have attempted to study these parameters by the junction recovery method which is useful in crystal p-i-n devices, and by the decay of the forward and reverse bias current with varying periods of zero bias delays after removal of the forward bias. We found that the current decay by the standard reverse bias recovery is much faster than that due to the decay under zero bias. In this paper we present our experimental results. We conclude that the true decay of the stored charged due to forward bias is much longer and consequently, the stored charge is much larger than that suggested by standard reverse recovery experiments.





1993 ◽  
Vol 297 ◽  
Author(s):  
R.A. Street ◽  
W.B. Jackson ◽  
M. Hack

Metastable defect creation by illumination and by a forward current in p-i-n devices are compared using CPM and reverse current measurements of the defect density. The data show that the same defects are formed by the two mechanisms, but with different spatial profiles. Numerical modelling shows how the spatial profile influences the reverse bias current.



Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 188 ◽  
Author(s):  
Debo Wei ◽  
Jianyu Fu ◽  
Ruiwen Liu ◽  
Ying Hou ◽  
Chao Liu ◽  
...  

Micro-Pirani vacuum sensors usually operate at hundreds of microwatts, which limits their application in battery-powered sensor systems. This paper reports a diode-based, low power consumption micro-Pirani vacuum sensor that has high sensitivity. Optimizations to the micro-Pirani vacuum sensor were made regarding two aspects. On the one hand, a greater temperature coefficient was obtained without increasing power consumption by taking advantage of series diodes; on the other hand, the sensor structure and geometries were redesigned to enlarge temperature variation. After that, the sensor was fabricated and tested. Test results indicated that the dynamic vacuum pressure range of the sensor was from 10−1 to 104 Pa when the forward bias current was as low as 10 μA with a power consumption of 50 μW. Average sensitivity was up to 90 μV/Pa and the sensitivity of unit power consumption increased to 1.8 V/W/Pa. In addition, the sensor could also work at a greater forward bias current for better sensor performance.



Sign in / Sign up

Export Citation Format

Share Document