Fatigue failure of concentrator III-V solar cells - Does forward bias current injection really kill III-V CPV cells?

Author(s):  
Kenji Araki ◽  
Hirokazu Nagai ◽  
Kazuyuki Tamura
2005 ◽  
Vol 862 ◽  
Author(s):  
J. Deng ◽  
M. L. Albert ◽  
J. M. Pearce ◽  
R. W. Collins ◽  
C. R. Wronski

AbstractResults are presented on the defect state distributions in intrinsic a-Si:H layers with and without hydrogen dilution in p-i-n solar cells obtained directly from the analysis of dark forwardbias current-voltage (JD-V) characteristics. It is shown that there are distinct differences in the distributions of both native and light induced defect states between the two types of i-layers. Computer simulations using these distributions are presented which show excellent agreement with the experimental results not only for the JD-V but more importantly for the bias dependent differential diode quality factor n(V) characteristics. Results are also presented on the nature of the gap states and their evolution with light induced degradation as well as their effects on the performance and stability of high quality a-Si:H solar cells.


2014 ◽  
Vol 16 (25) ◽  
pp. 12940-12948 ◽  
Author(s):  
Marko Berginc ◽  
Marko Topič ◽  
Urša Opara Krašovec

The efficiency recovery of dye-sensitized solar cells and crystal growth in cells stored in the dark, treated with a forward bias current and exposed to heat treatment.


1993 ◽  
Vol 73 (9) ◽  
pp. 4567-4570 ◽  
Author(s):  
Keda Wang ◽  
Marvin Silver ◽  
Daxing Han

2016 ◽  
Vol 18 (22) ◽  
pp. 14970-14975 ◽  
Author(s):  
Teresa S. Ripolles ◽  
Ajay K. Baranwal ◽  
Koji Nishinaka ◽  
Yuhei Ogomi ◽  
Germà Garcia-Belmonte ◽  
...  

In this work, a new current peak at forward bias in the dark current–voltage curves has been identified for standard mesoscopic perovskite solar cells.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 188 ◽  
Author(s):  
Debo Wei ◽  
Jianyu Fu ◽  
Ruiwen Liu ◽  
Ying Hou ◽  
Chao Liu ◽  
...  

Micro-Pirani vacuum sensors usually operate at hundreds of microwatts, which limits their application in battery-powered sensor systems. This paper reports a diode-based, low power consumption micro-Pirani vacuum sensor that has high sensitivity. Optimizations to the micro-Pirani vacuum sensor were made regarding two aspects. On the one hand, a greater temperature coefficient was obtained without increasing power consumption by taking advantage of series diodes; on the other hand, the sensor structure and geometries were redesigned to enlarge temperature variation. After that, the sensor was fabricated and tested. Test results indicated that the dynamic vacuum pressure range of the sensor was from 10−1 to 104 Pa when the forward bias current was as low as 10 μA with a power consumption of 50 μW. Average sensitivity was up to 90 μV/Pa and the sensitivity of unit power consumption increased to 1.8 V/W/Pa. In addition, the sensor could also work at a greater forward bias current for better sensor performance.


MRS Bulletin ◽  
1993 ◽  
Vol 18 (10) ◽  
pp. 51-55 ◽  
Author(s):  
Keith Barnham ◽  
Jenny Barnes ◽  
Guido Haarpaintner ◽  
Jenny Nelson ◽  
Mark Paxman ◽  
...  

The best present-day single-bandgap solar cells have efficiencies around 20–25%. However, the Carnot efficiency of the earth-sun system is 95%, so there is considerable potential for improvement. The fundamental efficiency limitation in a conventional solar cell results from the tradeoff between a low bandgap which maximizes light absorption and hence output current and a high bandgap which maximizes output voltage. As a result, the maximum theoretical efficiency of a conventional solar cell is around 30% in unconcentrated sunlight at a bandgap close to that of GaAs.The quantum-well solar cell is a novel approach to higher efficiency. In its simplest form, shown in Figure 1, it consists of a multiquantum-well (MQW) system in the undoped region of a p-i-n solar cell. For light with energy greater than the band-gap Eg, the quantum-well cell behaves like a conventional cell. However, light with energy below Eg can be absorbed in the quantum wells. Our studies show that if the material quality is good, the electrons and holes escape from the wells and contribute to a higher output current at a voltage between that of the barrier and well material. In AlGaAs/GaAs test devices, we have obtained efficiency enhancements of a factor of more than two when cells with quantum wells are compared with identical cells without wells.The structure in Figure 1 is, of course, essentially similar to the MQW photodiode or modulator structure that operates in reverse bias, and the quantum-well laser that operates in forward bias beyond flat band.


2011 ◽  
Vol 64 (10) ◽  
pp. 1409 ◽  
Author(s):  
Kornelia Lewandowska ◽  
Konrad Szaciłowski

Photoelectrodes containing Langmuir–Blodget layers of [60]fullerene-porphyrin tetrad behave like photodiodes. Upon excitation within the whole absorption spectrum of the molecule they generate photocurrent, the direction of which depends on the conducting substrate potential. At negative polarization high intensity cathodic photocurrent are observed, while at positive polarization much weaker anodic photocurrents are observed. The forward-bias to reverse-bias current ratio amounts 5:1. Therefore the [60]fullerene-porphyrin tetrad is closely related to semiconductors showing photoelectrochemical photocurrent switching effect and is a promising material for molecular optoelectronics. It can be used as a simple molecular photodiode. Assignment of logic values to polarization of the photoelectrode and to light and photocurrent pulses results in a very efficient two-channel optoelectronic demultiplexer.


Sign in / Sign up

Export Citation Format

Share Document