Direct Measurement of the Thermal Pressure Coefficient of Water

1962 ◽  
Vol 15 (4) ◽  
pp. 740 ◽  
Author(s):  
GN Malcolm ◽  
GLD Ritchie

A constant volume thermometer has been used to measure the thermal pressure coefficient of water over a wide range of temperature and pressure. The results show satisfactory agreement with values calculated from the appropriate data for the coefficients of thermal expansion and isothermal compressibility of water.

2018 ◽  
Vol 83 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Javid Safarov ◽  
Aygul Namazova ◽  
Astan Shahverdiyev ◽  
Egon Hassel

(p,?,T) data of 1-octyl-3-methylimidazolium tetrafluoroborate [OMIM][BF4] over a wide range of temperatures, from 278.15 to 413.15 K, and pressures, p, up to 140 MPa are reported with an estimated ?0.01?0.08 % experimental relative average percent deviation (APD) in the density. The measurements were performed using an Anton Paar DMA HPM vibration tube densimeter. (p,?,T) Data for [OMIM][BF4] was fitted and the parameters of the applied equation were determined as a function of pressure and temperature. After a thorough analysis of literature values and validity of the used equation of state, various thermophysical properties, such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient, internal pressure, heat capacities at constant pressure and volume, speed of sound and isentropic exponent at temperatures in the range 278.15?413.15 K and pressures p up to 140 MPa were calculated.


Author(s):  
Jelle Wieme ◽  
Veronique Van Speybroeck

Thermal stress is present in metal–organic frameworks undergoing temperature changes during adsorption and desorption. We computed the thermal pressure coefficient as a proxy for this phenomenon and discuss the impact of thermal expansion mismatch.


1973 ◽  
Vol 51 (12) ◽  
pp. 1885-1888 ◽  
Author(s):  
Ikchoon Lee ◽  
J. B. Hyne

The temperature dependence of the energy–volume coefficient of pure water and of aqueous potassium chloride solutions as a function of concentration over the temperature range 10–50 °C has been determined by direct measurement of constant volume thermal–pressure coefficient. The results show that a thermal anomaly exists in the energy–volume coefficient of aqueous solution in the temperature range 30–40 °C and becomes more pronounced as the concentration of solute is increased.


1969 ◽  
Vol 42 (5) ◽  
pp. 1409-1411
Author(s):  
B. E. Eichinger ◽  
P. J. Flory

Abstract The density, thermal expansion coefficient, and thermal pressure coefficient for polyisobutylene of mol wt 40,000 have been accurately determined from 0 to 150°. Results are compared with the reduced equation of state employed in the theory of solutions. The characteristic parameters v*, T*, and p* required for the treatment of polyisobutylene solutions are obtained from the experimental results.


1999 ◽  
Vol 77 (12) ◽  
pp. 2046-2052 ◽  
Author(s):  
Carmen Jarne ◽  
Manuela Artal ◽  
José Muñoz Embid ◽  
Inmaculada Velasco ◽  
Santos Otín

Densities of binary mixtures of 1,1,2-trichlorotrifluoroethane + dibromomethane, + bromochloromethane, or + bromotrichloromethane were measured over their entire composition ranges at 288.15 and 308.15 K. Thermal expansion coefficients (α) and excess molar volumes (VEm) were calculated. Moreover, densities at 298.15 K and pressures up to 80 bar (1 bar = 100 kPa) were determined for these same mixtures. Isothermal compressibilities (KT) of the pure liquids and their mixtures were obtained.Key words: density, excess volume, thermal expansion coefficient, isothermal compressibility.


2009 ◽  
Vol 6 (1) ◽  
pp. 689-722 ◽  
Author(s):  
J. Safarov ◽  
F. Millero ◽  
R. Feistel ◽  
A. Heintz ◽  
E. Hassel

Abstract. (p, ρ, T) data of standard seawater with practical salinity S≈35 (corresponding to an absolute salinity SA≈35.16504 g/kg) measured at T=(273.14 to 468.06) K and pressures up to p=140 MPa are reported with an estimated experimental relative combined standard uncertainty of 0.006% in density. The measurements were made with a newly constructed vibration-tube densimeter. The system was calibrated using double-distilled water, methanol and aqueous NaCl solutions. An empirical correlation for the density of standard seawater has been developed as a function of pressure and temperature. This equation of state was used to calculate other volumetric properties such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient, internal pressure and secant bulk modulus. The results can be used to extend the present equation of state of seawater to higher temperature as a function of pressure.


2018 ◽  
Vol 83 (9) ◽  
pp. 1005-1016
Author(s):  
Duygu Uysal-Ziraman ◽  
Javid Safarov ◽  
Özkan Doğan ◽  
Egon Hassel ◽  
Bekir Uysal

Pressure, density and temperature (p, ?, T) data and apparent molar volumes, V?o, of aqueous calcium acetate solutions Ca(CH3COO)2(aq) over a wide range of temperatures from 273.15 to 353.15 K, pressures up to p = 100 MPa and molalities m, of 0.04918, 0.09367, 0.23797, 0.36365, 0.85923, 1.06930, 1.35223 and 1.81668 mol?kg-1 of Ca(CH3COO)2 are reported. The combined expanded uncertainty of the density (?) measurements at the 95 % confidence level with a coverage factor of k = 2 was estimated to be Uc(?) = ?0.3 kg?m?3. The measurements were realized with an Anton Paar DMA HPM vibration tube density meter. The system was calibrated using double-distilled water, aqueous NaCl solutions, methanol, toluene and acetone. An equation of state for fitting of the (p, ?, T) data of aqueous calcium acetate was developed as a function of pressure, temperature and molality. After a thorough analysis of literature values and validity of the constructed equation of state, various thermophysical properties, such as isothermal compressibility, isobaric thermal expansibility, differences in isobaric and isochoric heat capacities, thermal pressure coefficient and internal pressure at the investigated state parameter intervals were calculated.


Sign in / Sign up

Export Citation Format

Share Document