The Stern-Geary and related methods for determining corrosion rates

1975 ◽  
Vol 28 (2) ◽  
pp. 243 ◽  
Author(s):  
DB Matthews

Calculation of the current-potential relations for corroding electrodes as a function of the cathodic and anodic transfer coefficients and as a function of the difference between the corrosion and reversible potentials demonstrates the deficiencies of the Stern-Geary equation for determining corrosion rates. The calculations also demonstrate that a linear current-potential relation is not predicted except over very small ranges of potential, e.g. 2 mV. As a consequence, it is essential in using the Stern- Geary and related methods to determine the slope dE/di at the corrosion potential. The Stern-Geary method is not applicable for systems where the corrosion potential is close to the reversible potential for either of the participating reactions and fortuitous linearity of currentvoltage plots may be erroneously interpreted as indicating that the Stern-Geary method is applicable. Methods of determining the corrosion rate which depend upon measuring the difference ΔE in corrosion and reversible potentials are not likely to be successful because of their sensitivity to the value of ΔE. A new derivation of the slope dE/di at the corrosion potential is presented and it is shown that the Stern-Geary and Mansfeld-Oldham equations may be derived as special cases. This new derivation is not immediately useful for determining the corrosion rate but it is shown that by measuring the dependence of the corrosion potential on concentration of cathodic reactant then the new derivation can be useful for rapid and accurate corrosion rate measurements even for small values of ΔE.

Author(s):  
Lana L. Wong ◽  
Sue I. Martin ◽  
Rau´l B. Rebak

The general corrosion rate may be measured using immersion tests or electrochemical tests. The electrochemical tests are fast and can be used for a rapid screening of environmental effects such as temperature and electrolyte composition. The electrochemical tests are described in ASTM standards G 59 and G 102. The basis of these tests is to calculate the resistance to polarization (Rp) in a voltage vs. current plot and to convert these values to corrosion rates using the Faraday law. Commercial software can calculate the corrosion rate based on inputs from the operator. This paper discusses three ways of calculating the corrosion rate (Methods 1, 2 and 3) based on a fixed set of acquired data of voltage vs. current. The conclusions are that the way the corrosion rate is calculated does not impact greatly on the absolute value of the corrosion rate. Variations in the acquired data (current, potential) from one experiment to another seem more important that the manner the data is fitted with the Rp slope.


2021 ◽  
Author(s):  
Luai Alhamad ◽  
Basil Alfakher ◽  
Abdullah Alrustum ◽  
Sajjad Aldarweesh

Abstract Acidizing deep carbonate formations by Hydrochloric acid (HCl) is a complex task due to high reaction and corrosion rates. Mixing organic acids with HCl is a typical method to reduce the acid's reactivity and corrosivity. Lactic acid has not been investigated completely in the area of carbonate acidizing. Lactic acid has a dissociation constant similar to formic acid, which is approximately 10 times larger than acetic acid. Therefore, the objective of this work is to compare lactic/HCl blends with plain HCl and formic/HCl blends. Corrosion tests were conducted at high temperature on C-95 steel coupons to investigate associated corrosion damage. Coreflood tests were performed on Indiana limestone cores to mimic matrix acidizing treatment and to investigate amount of pore volumes required to breakthrough. All blends were prepared to be equivalent to 15 wt% (4.4 M) HCl for comparison. Lactic and formic acid concentrations were set to be (0.5 or 1 M), and HCl concentration was calculated as appropriate to reach a blend with strength of 4.4 M. In terms of corrosivity evaluation, blends of lactic and HCl acids showed a corrosion rate of up to 1.97 lb/ft2 at 300°F. The formic and HCl blend showed a corrosion rate of 1.68 lb/ft2 at the same temperature. The difference in corrosion rates between the two mixtures is due to molecular weight difference between lactic and formic acids. When both acids were prepared at 1 M, lactic acid blend required more HCl to be equivalent to 15 wt% HCl acid which was associated with an increase in corrosion rate. Coreflood results established acid efficiency curves for lactic/HCl acid blends. The curves highlighted the correlation between acid-core reactivity, injection rate, and dissolution pattern. Lactic/HCl blend was less reactive than formic/HCl mixture as the last required lower injection rate to obtain optimum pore volume to breakthrough at 300°F. Lactic/HCl blend was able to generate an optimum dissolution pattern as a dominant wormhole was shown on tested core plugs inlet face. This study expands the investigation of lactic acid utilization in carbonate acidizing. Major advantages rendered by using lactic acid with HCl include: (1) favorable dissolution pattern due to lactic acid being less reactive than HCl or formic acids, and (2) less corrosion rates comparing to HCl, that can reduce allocated costs for maintenance and replacements.


Author(s):  
Luc Huyse ◽  
Albert van Roodselaar

With the increased acceptance of the use of probabilistic fitness-for-service methods, considerable effort has been dedicated to the estimation of the corrosion rate distribution parameters. The corrosion rate is typically computed from the difference in anomaly size over a specific time interval. The anomaly sizes are measured through either in-line inspection or direct assessment. Sizing accuracies for inline inspection methods are reasonably well established and in many cases the sizing uncertainty is non-negligible. In many approaches that are proposed in the literature the time-averaged corrosion rates are computed without explicitly considering the effect of the sizing uncertainties and as a result considerable interpretation and engineering judgment is required when estimating corrosion rates. This paper highlights some of the effects of the sizing uncertainties and the resulting biases that occur in the subsequent reliability calculations. These assessments are used to determine the most appropriate course of action: repair, replacement, or time of next inspection. The cost for repair or replacement of subsea pipelines is much higher than for onshore pipelines. For subsea applications, it is therefore paramount that the risk calculations, and therefore the corrosion rate estimates, be as accurate as possible. In subsea applications, the opportunity to repair individual defects is often limited due to practical constraints and there is merit in an approach that focuses on entire spools or pipeline segments. The proposed statistical analysis method is ideally suited to this application although the principles behind the analysis apply equally well to onshore lines subject to either internal or external corrosion threats.


2018 ◽  
Vol 941 ◽  
pp. 1760-1765
Author(s):  
Satoshi Sunada ◽  
Yoshitaka Matsui ◽  
Syogo Takeuchi ◽  
Taku Iwaoka ◽  
Koichi Sato ◽  
...  

Sintered magnesium alloys, which were fabricated by Spark Plasma Sintering (SPS) method, were examined to study corrosion characteristics by electrochemical method, XRD and EPMA. The binary mixtures alloys of a low-melting-point metal powder (Sn, Bi, Sb) of1.0 vol.% and the pure magnesium powder were prepared. In the Mg-1.0vol.%Bi and Mg-1.0vol.%Sn, Mg3Bi2 and Mg2Sn precipitates was recognized by XRD, respectively. In addition, formation of oxide along powder particle boundaries was observed by EPMA elemental mapping in all specimens. In the case of Mg-1.0vol.%Zn, precipitation of metallic compounds was not recognized by these experiments. According to the results of polarization curve measurements, the Mg-1.0vol.%Bi shows highest corrosion potential. However, corrosion rate which was estimated by Tafel method is relatively larger than other alloys due to Mg3Bi2 precipitation. This result suggests that Mg3Bi2 acts as cathode site. The Mg-1.0vol.%Sn shows superior corrosion rale in these alloys.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Iva Franjić ◽  
Sadia Khalid ◽  
Josip Pečarić

The lower bounds of the functional defined as the difference of the right-hand and the left-hand side of the Jensen inequality are studied. Refinements of some previously known results are given by applying results from the theory of majorization. Furthermore, some interesting special cases are considered.


Author(s):  
Louis C. Burmeister

A formula is derived for the dependence of heat exchanger effectiveness on the number of transfer units for a spiral-plate heat exchanger with equal capacitance rates. The difference-differential equations that describe the temperature distributions of the two counter-flowing fluids, neglecting thermal radiation, are solved symbolically to close approximation. Provision is made for offset inlet and exit of the hot and cold fluids at the outer periphery and for large heat transfer coefficients in entrance regions. The peak effectiveness and the number of transfer units at which it occurs are predicted.


2009 ◽  
Vol 9 (23) ◽  
pp. 9101-9110 ◽  
Author(s):  
V. Grewe ◽  
R. Sausen

Abstract. This comment focuses on the statistical limitations of a model grading, as applied by D. Waugh and V. Eyring (2008) (WE08). The grade g is calculated for a specific diagnostic, which basically relates the difference of means of model and observational data to the standard deviation in the observational dataset. We performed Monte Carlo simulations, which show that this method has the potential to lead to large 95%-confidence intervals for the grade. Moreover, the difference between two model grades often has to be very large to become statistically significant. Since the confidence intervals were not considered in detail for all diagnostics, the grading in WE08 cannot be interpreted, without further analysis. The results of the statistical tests performed in WE08 agree with our findings. However, most of those tests are based on special cases, which implicitely assume that observations are available without any errors and that the interannual variability of the observational data and the model data are equal. Without these assumptions, the 95%-confidence intervals become even larger. Hence, the case, where we assumed perfect observations (ignored errors), provides a good estimate for an upper boundary of the threshold, below that a grade becomes statistically significant. Examples have shown that the 95%-confidence interval may even span the whole grading interval [0, 1]. Without considering confidence intervals, the grades presented in WE08 do not allow to decide whether a model result significantly deviates from reality. Neither in WE08 nor in our comment it is pointed out, which of the grades presented in WE08 inhibits such kind of significant deviation. However, our analysis of the grading method demonstrates the unacceptably high potential for these grades to be insignificant. This implies that the grades given by WE08 can not be interpreted by the reader. We further show that the inclusion of confidence intervals into the grading approach is necessary, since otherwise even a perfect model may get a low grade.


1985 ◽  
Vol 38 (8) ◽  
pp. 1133 ◽  
Author(s):  
BG Pound ◽  
MH Abdurrahman ◽  
MP Glucina ◽  
GA Wright ◽  
RM Sharp

The corrosion rates of low-carbon steel, and 304, 316 and 410/420 stainless steels in simulated geothermal media containing hydrogen sulfide have been measured by means of the polarization resistance technique. Good agreement was found between weight-loss and polarization resistance measurements of the corrosion rate for all the metals tested. Carbon steel formed a non-adherent film of mackinawite (Fe1 + xS). The lack of protection afforded to the steel by the film resulted in an approximately constant corrosion rate. The stainless steels also exhibited corrosion rates that were independent of time. However, the 410 and 420 alloys formed an adherent film consisting mainly of troilite ( FeS ) which provided only limited passivity. In contrast, the 304 and 316 alloys appeared to be essentially protected by a passive film which did not seem to involve an iron sulfide phase. However, all the stainless steels, particularly the 410 and 420 alloys, showed pitting, which indicated that some breakdown of the passive films occurred.


2014 ◽  
Vol 1665 ◽  
pp. 195-202 ◽  
Author(s):  
Osamu Kato ◽  
Hiromi Tanabe ◽  
Tomofumi Sakuragi ◽  
Tsutomu Nishimura ◽  
Tsuyoshi Tateishi

ABSTRACTCorrosion behavior is a key issue in the assessment of disposal performance for activated waste such as spent fuel assemblies (i.e., hulls and end-pieces) because corrosion is expected to initiate radionuclide (e.g., C-14) leaching from such waste. Because the anticipated corrosion rate is extremely low, understanding and modeling Zircaloy (Zry) corrosion behavior under geological disposal conditions is important in predicting very long-term corrosion. Corrosion models applicable in the higher temperature ranges of nuclear reactors have been proposed based on considerable testing in the 523−633 K temperature range.In this study, corrosion tests were carried out to confirm the applicability of such existing models to the low temperature range of geological disposal, and to examine the influence of material, environmental, and other factors on corrosion rates under geological disposal conditions. A characterization analysis of the generated oxide film was also performed.To confirm applicability, the corrosion rate of Zry-4 in pure water with a temperature change from 303 K to 433 K was obtained using a hydrogen measuring technique, giving a corrosion rate for 180 days of 8 × 10-3 μm/y at 303 K.To investigate the influence of various factors, corrosion tests were carried out. The corrosion rates for Zry-2 and Zry-4 were almost same, and increased with a temperature increase from 303 K to 353 K. The influence of pH (12.5) compared with pure water was about 1.4 at 180 days at 303 K.


1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


Sign in / Sign up

Export Citation Format

Share Document