Beneficial impacts of climate change on pastoral and broadacre agriculture in cool-temperate Tasmania

2014 ◽  
Vol 65 (2) ◽  
pp. 194 ◽  
Author(s):  
D. C. Phelan ◽  
D. Parsons ◽  
S. N. Lisson ◽  
G. K. Holz ◽  
N. D. MacLeod

Although geographically small, Tasmania has a diverse range of regional climates that are affected by different synoptic influences. Consequently, changes in climate variables and climate-change impacts will likely vary in different regions of the state. This study aims to quantify the regional effects of projected climate change on the productivity of rainfed pastoral and wheat crop systems at five sites across Tasmania. Projected climate data for each site were obtained from the Climate Futures for Tasmania project (CFT). Six General Circulation Models were dynamically downscaled to ~10-km grid cells using the CSIRO Conformal Cubic Atmospheric Model under the A2 emissions scenario for the period 1961–2100. Mean daily maximum and minimum temperatures at each site are projected to increase from a baseline period (1981–2010) to 2085 (2071–2100) by 2.3–2.7°C. Mean annual rainfall is projected to increase slightly at all sites. Impacts on pasture and wheat production were simulated for each site using the projected CFT climate data. Mean annual pasture yields are projected to increase from the baseline to 2085 largely due to an increase in spring pasture growth. However, summer growth of temperate pasture species may become limited by 2085 due to greater soil moisture deficits. Wheat yields are also projected to increase, particularly at sites presently temperature-limited. This study suggests that increased temperatures and elevated atmospheric CO2 concentrations are likely to increase regional rainfed pasture and wheat production in the absence of any significant changes in rainfall patterns.

2019 ◽  
Vol 11 (4) ◽  
pp. 1724-1747 ◽  
Author(s):  
M. Allani ◽  
R. Mezzi ◽  
A. Zouabi ◽  
R. Béji ◽  
F. Joumade-Mansouri ◽  
...  

Abstract This study evaluates the impacts of climate change on water supply and demand of the Nebhana dam system. Future climate change scenarios were obtained from five general circulation models (GCMs) of CMIP5 under RCP 4.5 and 8.5 emission scenarios for the time periods, 2021–2040, 2041–2060 and 2061–2080. Statistical downscaling was applied using LARS-WG. The GR2M hydrological model was calibrated, validated and used as input to the WEAP model to assess future water availability. Expected crop growth cycle lengths were estimated using a growing degree days model. By means of the WEAP-MABIA method, projected crop and irrigation water requirements were estimated. Results show an average increase in annual ETo of 6.1% and a decrease in annual rainfall of 11.4%, leading to a 24% decrease in inflow. Also, crops' growing cycles will decrease from 5.4% for wheat to 31% for citrus trees. The same tendency is observed for ETc. Concerning irrigation requirement, variations are more moderated depending on RCPs and time periods, and is explained by rainfall and crop cycle duration variations. As for demand and supply, results currently show that supply does not meet the system demand. Climate change could worsen the situation unless better planning of water surface use is done.


2016 ◽  
Vol 7 (4) ◽  
pp. 665-682 ◽  
Author(s):  
Emile Elias ◽  
Albert Rango ◽  
Caitriana M. Steele ◽  
John F. Mejia ◽  
Ruben Baca ◽  
...  

For more than two decades researchers have utilized the snowmelt runoff model (SRM) to test the impacts of climate change on streamflow of snow-fed systems. SRM developers recommend a parameter shift during simulations of future climate, but this is often omitted. Here we show the impact of this omission on model results. In this study, the hydrological effects of climate change are modeled over three sequential years with typical and recommended SRM methodology. We predict the impacts of climate change on water resources of five subbasins of an arid region. Climate data are downscaled to weather stations. Period change analysis gives temperature and precipitation changes for 55 general circulation models which are then subsampled to produce four future states per basin. Results indicate an increase in temperature between 3.0 and 6.2 °C and an 18% decrease to 26% increase in precipitation. Without modifications to the snow runoff coefficient (cS), mean results across all basins range from a reduction in total volume of 21% to an increase of 4%. Modifications to cS resulted in a 0–10% difference in simulated annual volume. Future application of SRM should include a parameter shift representing the changed climate.


Author(s):  
Przemyslaw Zelazowski ◽  
Yadvinder Malhi ◽  
Chris Huntingford ◽  
Stephen Sitch ◽  
Joshua B. Fisher

The future of tropical forests has become one of the iconic issues in climate-change science. A number of studies that have explored this subject have tended to focus on the output from one or a few climate models, which work at low spatial resolution, whereas society and conservation-relevant assessment of potential impacts requires a finer scale. This study focuses on the role of climate on the current and future distribution of humid tropical forests (HTFs). We first characterize their contemporary climatological niche using annual rainfall and maximum climatological water stress, which also adequately describe the current distribution of other biomes within the tropics. As a first-order approximation of the potential extent of HTFs in future climate regimes defined by global warming of 2 ° C and 4 ° C, we investigate changes in the niche through a combination of climate-change anomaly patterns and higher resolution (5 km) maps of current climatology. The climate anomalies are derived using data from 17 coupled Atmosphere–Ocean General Circulation Models (AOGCMs) used in the Fourth Assessment of the Intergovernmental Panel for Climate Change. Our results confirm some risk of forest retreat, especially in eastern Amazonia, Central America and parts of Africa, but also indicate a potential for expansion in other regions, for example around the Congo Basin. The finer spatial scale enabled the depiction of potential resilient and vulnerable zones with practically useful detail. We further refine these estimates by considering the impact of new environmental regimes on plant water demand using the UK Met Office land-surface scheme (of the HadCM3 AOGCM). The CO 2 -related reduction in plant water demand lowers the risk of die-back and can lead to possible niche expansion in many regions. The analysis presented here focuses primarily on hydrological determinants of HTF extent. We conclude by discussing the role of other factors, notably the physiological effects of higher temperature.


2020 ◽  
Vol 12 (15) ◽  
pp. 6036
Author(s):  
Yong Chen ◽  
Gary W. Marek ◽  
Thomas H. Marek ◽  
Dana O. Porter ◽  
Jerry E. Moorhead ◽  
...  

Agricultural production in the Texas High Plains (THP) relies heavily on irrigation and is susceptible to drought due to the declining availability of groundwater and climate change. Therefore, it is meaningful to perform an overview of possible climate change scenarios to provide appropriate strategies for climate change adaptation in the THP. In this study, spatio-temporal variations of climate data were mapped in the THP during 2000–2009, 2050–2059, and 2090–2099 periods using 14 research-grade meteorological stations and 19 bias-corrected General Circulation Models (GCMs) under representative concentration pathway (RCP) scenarios RCP 4.5 and 8.5. Results indicated different bias correction methods were needed for different climatic parameters and study purposes. For example, using high-quality data from the meteorological stations, the linear scaling method was selected to alter the projected precipitation while air temperatures were bias corrected using the quantile mapping method. At the end of the 21st century (2090–2099) under the severe CO2 emission scenario (RCP 8.5), the maximum and minimum air temperatures could increase from 3.9 to 10.0 °C and 2.8 to 8.4 °C across the entire THP, respectively, while precipitation could decrease by ~7.5% relative to the historical (2000–2009) observed data. However, large uncertainties were found according to 19 GCM projections.


2016 ◽  
Author(s):  
Xingcai Liu ◽  
Qiuhong Tang ◽  
Nathalie Voisin ◽  
Huijuan Cui

Abstract. Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs) forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by −1.7 to 2% in the near future (2020–2050) and increase by 3 to 6 % in the late 21st century (2070–2099). The annual DHP is projected to change by −2.2 to −5.4 % (0.7–1.7 % of the total installed hydropower capacity [IHC]) and −1.3 to −4% (0.4–1.3 % of total IHC) for 2020–2050 and 2070–2099, respectively. Regional variations emerge: GHP will increase in northern China, but decrease in southern China – mostly in South-Central China and Eastern China – where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in Southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multi-model assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China.


Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 271 ◽  
Author(s):  
M. Islam ◽  
Nynke Hofstra ◽  
Ekaterina Sokolova

Climate change, comprising of changes in precipitation patterns, higher temperatures and sea level rises, increases the likelihood of future flooding in the Betna River basin, Bangladesh. Hydrodynamic modelling was performed to simulate the present and future water level and discharge for different scenarios using bias-corrected, downscaled data from two general circulation models. The modelling results indicated that, compared to the baseline year (2014–2015), the water level is expected to increase by 11–16% by the 2040s and 14–23% by the 2090s, and the monsoon daily maximum discharge is expected to increase by up to 13% by the 2040s and 21% by the 2090s. Sea level rise is mostly responsible for the increase in water level. The duration of water level exceedance of the established danger threshold and extreme discharge events can increase by up to half a month by the 2040s and above one month by the 2090s. The combined influence of the increased water level and discharge has the potential to cause major floods in the Betna River basin. The results of our study increase the knowledge base on climate change influence on water level and discharge at a local scale. This is valuable for water managers in flood-risk mitigation and water management.


2006 ◽  
Vol 6 (3) ◽  
pp. 387-395 ◽  
Author(s):  
S. Wang ◽  
R. McGrath ◽  
T. Semmler ◽  
C. Sweeney ◽  
P. Nolan

Abstract. The impact of climate change on local discharge variability is investigated in the Suir River Catchment which is located in the south-east of Ireland. In this paper, the Rossby Centre Regional Atmospheric Model (RCA) is driven by different global climate data sets. For the past climate (1961–2000), the model is driven by ECMWF reanalysis (ERA-40) data as well as by the output of the general circulation models (GCM's) ECHAM4 and ECHAM5. For the future simulation (2021–2060), the model is driven by two GCM scenarios: ECHAM4_B2 and ECHAM5_A2. To investigate the influence of changed future climate on local discharge, the precipitation of the model output is used as input for the HBV hydrological model. The calibration and validation results of our ERA-40 driven present day simulation shows that the HBV model can reproduce the discharge fairly well, except the extreme discharge is systematically underestimated by about 15–20%. Altogether the application of a high resolution regional climate model in connection with a conceptual hydrological model is capable of capturing the local variability of river discharge for present-day climate using boundary values assimilated with observations such as ERA-40 data. However, using GCM data to drive RCA and HBV suggests, that there is still large uncertainty connected with the GCM formulation: For present day climate the validation of the ECHAM4 and ECHAM5 driven simulations indicates stronger discharge compared to the observations due to overprediction of precipitation, especially for the ECHAM5 driven simulation in the summer season. Whereas according to the ECHAM4_B2 scenario the discharge generally increases – most pronounced in the wet winter time, there are only slight increases in winter and considerable decreases in summer according to the ECHAM5_A2 scenario. This also leads to a different behaviour in the evolution of return levels of extreme discharge events: Strong increases according to the ECHAM4_B2 scenario and slight decreases according to the ECHAM5_A2 scenario.


2021 ◽  
Author(s):  
Shalaka Shah ◽  
Shreenivas Londhe

Abstract It is the need of the hour to predict the impact of climate change, especially rainfall on the future environmental conditions on local as well as global scales. The present work aims at studying the impact of climate change on the rainfall occurring over Pune, the eighth largest city in India. The General Circulation Models (GCMs) are predominantly used to obtain the climate data all over the globe, at various grid points, for past and future years. Rainfall values obtained from these grid points need to be downscaled to make them location specific. This study proposes a soft computing tool, Artificial Neural Network (ANN) for the purpose of downscaling. The rainfall data at 4 grid points surrounding Pune, was extracted from 5 different GCMs and given as input to ANN with observed rainfall as output, thus forming 5 models. For comparison, a pre-existing downscaling technique, Distribution based scaling (DBS) was used. The coefficient of correlation (r) showed that ANN was working better than DBS. The value of r for ANN was 0.73 for its least accurate model whereas DBS managed to reach 0.73 for its most accurate model. The future rainfall estimated with the help of the trained ANN models show an increase in mean rainfall over the Pune region by ∼2 – 15% and decrease in maximum rainfall by ∼40 – 65%. Peak prediction of rainfall simulated by ANN was not very accurate and hence there is still an opportunity for improvement which is the future scope of this study.


2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


Sign in / Sign up

Export Citation Format

Share Document